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Series Preface

Mathematics is playing an ever more important role in the physical and
biological sciences, provoking a blurring of boundaries between scientific
disciplines and a resurgence of interest in the modern as well as the classical
techniques of applied mathematics. This renewal of interest, both in research
and teaching, has led to the establishment of the series: Texts in Applied
Mathematics (TAM ).

The development of new courses is a natural consequence of a high level
of excitement on the research frontier as newer techniques, such as numerical
and symbolic computer systems, dynamical systems, and chaos, mix with and
reinforce the traditional methods of applied mathematics. Thus, the purpose
of this textbook series is to meet the current and future needs of these
advances and encourage the teaching of new courses.

TAM will publish textbooks suitable for use in advanced undergraduate
and beginning graduate courses, and will complement the Applied Mathe-
matical Sciences (AMS ) series, which will focus on advanced textbooks and
research level monographs.



Preface to the Fourth Edition

There are two major changes in the Fourth Edition of Differential Equations
and Their Applications. The first concerns the computer programs in this text.
In keeping with recent trends in computer science, we have replaced all the
APL programs with Pascal and C programs. The Pascal programs appear in
the text in place of the APL programs, where they are followed by the Fortran
programs, while the C programs appear in Appendix C.

The second change, in response to many readers’ suggestions, is the in-
clusion of a new chapter (Chapter 6) on Sturm-Liouville boundary value
problems. Our goal in this chapter is not to present a whole lot of technical
material. Rather it is to show that the theory of Fourier series presented in
Chapter 5 is not an isolated theory but is part of a much more general and
beautiful theory which encompasses many of the key ideas of linear algebra.

To accomplish this goal we have included some additional material from
linear algebra. In particular, we have introduced the notions of inner product
spaces and self-adjoint matrices, proven that the eigenvalues of a self-adjoint
matrix are real, and shown that all self-adjoint matrices possess an ortho-
normal basis of eigenvectors. These results are at the heart of Sturm-Liouville
theory.

I wish to thank Robert Giresi for writing the Pascal and C programs.

New York City Martin Braun
May, 1992



Preface to the Third Edition

There are three major changes in the Third Edition of Differential Equations
and Their Applications. First, we have completely rewritten the section on
singular solutions of differential equations. A new section, 2.8.1, dealing
with Euler equations has been added, and this section is used to motivate a
greatly expanded treatment of singular equations in sections 2.8.2 and 2.8.3.

Our second major change is the addition of a new section, 4.9, dealing
with bifurcation theory, a subject of much current interest. We felt it
desirable to give the reader a brief but nontrivial introduction to this
important topic.

Our third major change is in Section 2.6, where we have switched to the
metric system of units. This change was requested by many of our readers.

In addition to the above changes, we have updated the material on
population models, and have revised the exercises in this section. Minor
editorial changes have also been made throughout the text.

New York City .
November, 1982 Martin Braun



Preface to the First Edition

This textbook is a unique blend of the theory of differential equations and
their exciting application to “real world” problems. First, and foremost, it
is a rigorous study of ordinary differential equations and can be fully
understood by anyone who has completed one year of calculus. However,
in addition to the traditional applications, it also contains many exciting
“real life” problems. These applications are completely self contained.
First, the problem to be solved is outlined clearly, and one or more
differential equations are derived as a model for this problem. These
equations are then solved, and the results are compared with real world
data. The following applications are covered in this text.

1. In Section 1.3 we prove that the beautiful painting “Disciples of
Emmaus” which was bought by the Rembrandt Society of Belgium for
$170,000 was a modern forgery.

2. In Section 1.5 we derive differential equations which govern the
population growth of various species, and compare the results predicted by
our models with the known values of the populations.

3. In Section 1.6 we derive differential equations which govern the rate at
which farmers adopt new innovations. Surprisingly, these same differential
equations govern the rate at which technological innovations are adopted in
such diverse industries as coal, iron and steel, brewing, and railroads.

4. In Section 1.7 we try to determine whether tightly sealed drums filled
with concentrated waste material will crack upon impact with the ocean
floor. In this section we also describe several tricks for obtaining informa-
tion about solutions of a differential equation that cannot be solved
explicitly.



Preface to the First Edition

5. In Section 2.7 we derive a very simple model of the blood glucose
regulatory system and obtain a fairly reliable criterion for the diagnosis of
diabetes.

6. Section 4.5 describes two applications of differential equations to
arms races and actual combat. In Section 4.5.1 we discuss L. F. Richard-
son’s theory of the escalation of arms races and fit his model to the arms
race which led eventually to World War 1. This section also provides the
reader with a concrete feeling for the concept of stability. In Section 4.5.2
we derive two Lanchestrian combat models, and fit one of these models,
with astonishing accuracy, to the battle of Iwo Jima in World War II.

7. In Section 4.10 we show why the predator portion (sharks, skates, rays,
etc.) of all fish caught in the port of Fiume, Italy rose dramatically during
the years of World War 1. The theory we develop here also has a
spectacular application to the spraying of insecticides.

8. In Section 4.11 we derive the “principle of competitive exclusion,”
which states, essentially, that no two species can earn their living in an
identical manner.

9. In Section 4.12 we study a system of differential equations which
govern the spread of epidemics in a population. This model enables us to
prove the famous “threshold theorem of epidemiology,” which states that
an epidemic will occur only if the number of people susceptible to the
disease exceeds a certain threshold value. We also compare the predictions
of our model with data from an actual plague in Bombay.

10. In Section 4.13 we derive a model for the spread of gonorrhea and
prove that either this disease dies out, or else the number of people who
have gonorrhea will ultimately approach a fixed value.

This textbook also contains the following important, and often unique
features.

1. In Section 1.10 we give a complete proof of the existence—uniqueness
theorem for solutions of first-order equations. Our proof is based on the
method of Picard iterates, and can be fully understood by anyone who has
completed one year of calculus.

2. In Section 1.11 we show how to solve equations by iteration. This
section has the added advantage of reinforcing the reader’s understanding
of the proof of the existence—uniqueness theorem.

3. Complete Fortran and APL programs are given for every computer
example in the text. Computer problems appear in Sections 1.13-1.17,
which deal with numerical approximations of solutions of differential
equations; in Section 1.11, which deals with solving the equations x = f(x)
and g(x)=0; and in Section 2.8, where we show how to obtain a power-
series solution of a differential equation even though we cannot explicitly
solve the recurrence formula for the coefficients.

4. A self-contained introduction to the computing language APL is
presented in Appendix C. Using this appendix we have been able to teach
our students APL in just two lectures.



Preface to the First Edition

5. Modesty aside, Section 2.12 contains an absolutely super and unique
treatment of the Dirac delta function. We are very proud of this section
because it eliminates all the ambiguities which are inherent in the tradi-
tional exposition of this topic.

6. All the linear algebra pertinent to the study of systems of equations is
presented in Sections 3.1-3.7. One advantage of our approach is that the
reader gets a concrete feeling for the very important but extremely abstract
properties of linear independence, spanning, and dimension. Indeed, many
linear algebra students sit in on our course to find out what’s really going
on in their course.

Differential Equations and Their Applications can be used for a one- or
two-semester course in ordinary differential equations. It is geared to the
student who has completed two semesters of calculus. Traditionally, most
authors present a “suggested syllabus” for their textbook. We will not do so
here, though, since there are already more than twenty different syllabi in
use. Suffice it to say that this text can be used for a wide variety of courses
in ordinary differential equations.

I greatly appreciate the help of the following people in the preparation
of this manuscript: Douglas Reber who wrote the Fortran programs,
Eleanor Addison who drew the original figures, and Kate MacDougall,
Sandra Spinacci, and Miriam Green who typed portions of this manu-
script.

I am grateful to Walter Kaufmann-Biihler, the mathematics editor at
Springer-Verlag, and Elizabeth Kaplan, the production editor, for their
extensive assistance and courtesy during the preparation of this
manuscript. It is a pleasure to work with these true professionals.

Finally, I am especially grateful to Joseph P. LaSalle for the encourage-
ment and help he gave me. Thanks again, Joe.

New York City .
July, 1976 Martin Braun



Chapter 1
First-order differential equations

1.1
1.2
1.3
14
1.5
1.6
1.7
1.8

1.9

Introduction

First-order linear differential equations

The Van Meegeren art forgeries

Separable equations

Population models

The spread of technological innovations

An atomic waste disposal problem

The dynamics of tumor growth, mixing problems, and
orthogonal trajectories

Exact equations, and why we cannot solve very many
differential equations

0 The existence-uniqueness theorem; Picard iteration
1 Finding roots of equations by iteration

1.12

1.13

1.11.1 Newton’s method

Difference equations, and how to compute the interest
due on your student loans

Numerical approximations; Euler’s method

1.13.1 Error analysis for Euler’s method

1.14 The three term Taylor series method

1.15
1.16
1.17

An improved Euler method
The Runge-Kutta method
What to do in practice

Contents

11
20
26
39
46

52

58
67
81
87

91

96
100
107
109
112
116



Contents

Chapter 2
Second-order linear differential equations

2.1 Algebraic properties of solutions
2.2 Linear equations with constant coefficients
2.2.1 Complex roots
2.2.2 Equal roots; reduction of order
2.3 The nonhomogeneous equation
2.4 The method of variation of parameters
2.5 The method of judicious guessing
2.6 Mechanical vibrations
2.6.1 The Tacoma Bridge disaster
2.6.2 Electrical networks
2.7 A model for the detection of diabetes
2.8 Series solutions
2.8.1 Singular points, Euler equations
2.8.2 Regular singular points, the method of Frobenius
2.8.3 Equal roots, and roots differing by an integer
2.9 The method of Laplace transforms
2.10 Some useful properties of Laplace transforms
2.11 Differential equations with discontinuous right-hand sides
2.12 The Dirac delta function
2.13 The convolution integral
2.14 The method of elimination for systems
2.15 Higher-order equations

Chapter 3
Systems of differential equations

3.1 Algebraic properties of solutions of linear systems

3.2 Vector spaces

3.3 Dimension of a vector space

3.4 Applications of linear algebra to differential equations
3.5 The theory of determinants

3.6 Solutions of simultaneous linear equations

3.7 Linear transformations

3.8 The eigenvalue-eigenvector method of finding solutions
3.9 Complex roots

3.10 Equal roots

3.11 Fundamental matrix solutions; eA’

3.12 The nonhomogeneous equation; variation of parameters
3.13 Solving systems by Laplace transforms

Chapter 4
Qualitative theory of differential equations

4.1 Introduction
4.2 Stability of linear systems

127

127
138
141
145
151
153
157
165
173
175
178
185
198
203
219
225
233
238
243
251
257
259

264

264
273
279
291
297
310
320
333
341
345
355
360
368

372

372
378



4.3 Stability of equilibrium solutions
4.4 The phase-plane
4.5 Mathematical theories of war
4.5.1 L.F. Richardson’s theory of conflict
4.5.2 Lanchester’s combat models and the battle of Iwo Jima
4.6 Qualitative properties of orbits
4.7 Phase portraits of linear systems
4.8 Long time behavior of solutions; the Poincaré-Bendixson Theorem
4.9 Introduction to bifurcation theory
4.10 Predator-prey problems; or why
the percentage of sharks caught in the Mediterranean
Sea rose dramatically during World War I
4.11 The principle of competitive exclusion in population biology
4.12 The Threshold Theorem of epidemiology
4.13 A model for the spread of gonorrhea

Chapter 5
Separation of variables and Fourier series

5.1 Two point boundary-value problems

5.2 Introduction to partial differential equations
5.3 The heat equation; separation of variables
5.4 Fourier series

5.5 Even and odd functions

5.6 Return to the heat equation

5.7 The wave equation

5.8 Laplace’s equation

Chapter 6
Sturm—Liouville boundary value problems

6.1 Introduction

6.2 Inner product spaces

6.3 Orthogonal bases, Hermitian operators
6.4 Sturm-Liouville theory

Appendix A

Some simple facts concerning functions
of several variables

Appendix B
Sequences and series

Appendix C
C Programs

Contents

385
394
398
398
405
414
418
428
437

443
451
458
465

476

476
481
483
487
493
498
503
508

514

514
515
526
533

545

547

549



Contents

Answers to odd-numbered exercises 557

Index 575



First-order differential equations

1.1 Introduction

This book is a study of differential equations and their applications. A dif-
ferential equation is a relationship between a function of time and its de-
rivatives. The equations

dy 5 . .

x =3y*sin(r+y) (1)
and

d¥y d?y

——=e 41+ — il

dr? dr? i

are both examples of differential equations. The order of a differential
equation is the order of the highest derivative of the function y that ap-
pears in the equation. Thus (i) is a first-order differential equation and (ii)
is a third-order differential equation. By a solution of a differential equa-
tion we will mean a continuous function y(#) which together with its de-
rivatives satisfies the relationship. For example, the function
y(1)=2sins -} cos2t

is a solution of the second-order differential equation

d2
—f +y=cos2t
. dt
since

:—Z(Zsint— 3€0s2¢)+(2sins — § cos2r)
1

=(—2sint+gcos2t)+28int—%cos2t=cos2t.

1



1 First-order differential equations

Differential equations appear naturally in many areas of science and the
humanities. In this book, we will present serious discussions of the applica-
tions of differential equations to such diverse and fascinating problems as
the detection of art forgeries, the diagnosis of diabetes, the increase in the
percentage of sharks present in the Mediterranean Sea during World War
1, and the spread of gonorrhea. Our purpose is to show how researchers
have used differential equations to solve, or try to solve, real life problems.
And while we will discuss some of the great success stories of differential
equations, we will also point out their limitations and document some of
their failures.

1.2 First-order linear differential equations

We begin by studying first-order differential equations and we will assume
that our equation is, or can be put, in the form

)
=1 (1) ()

The problem before us is this: Given f(z,y) find all functions y () which
satisfy the differential equation (1). We approach this problem in the
following manner. A fundamental principle of mathematics is that the way
to solve a new problem is to reduce it, in some manner, to a problem that
we have already solved. In practice this usually entails successively sim-
plifying the problem until it resembles one we have already solved. Since
we are presently in the business of solving differential equations, it is advis-
able for us to take inventory and list all the differential equations we can
solve. If we assume that our mathematical background consists of just ele-
mentary calculus then the very sad fact is that the only first-order differen-
tial equation we can solve at present is

Y e @

where g is any integrable function of time. To solve Equation (2) simply
integrate both sides with respect to ¢, which yields

y(t)=fg(z)dt+c.

Here c is an arbitrary constant of integration, and by [ g(f)dt we mean an

anti-derivative of g, that is, a function whose derivative is g. Thus, to solve
any other differential equation we must somehow reduce it to the form (2).
As we will see in Section 1.9, this is impossible to do in most cases. Hence,
we will not be able, without the aid of a computer, to solve most differen-
tial equations. It stands to reason, therefore, that to find those differential
equations that we can solve, we should start with very simple equations

2



1.2 First-order linear differential equations

and not ones like

dy sin(1-37V[y| )

— =g

dt
(which incidentally, cannot be solved exactly). Experience has taught us
that the “simplest” equations are those which are linear in the dependent
variable y.

Definition. The general first-order linear differential equation is

%+a(t)y=b(t). 3)

Unless otherwise stated, the functions a(¢) and b(¢) are assumed to be
continuous functions of time. We single out this equation and call it lin-
ear because the dependent variable y appears by itself, that is, no terms
such as e, 3 or siny etc. appear in the equation. For example dy / dt
=y2+sint and dy /dt =cosy + t are both nonlinear equations because of
the y? and cosy terms respectively.

Now it is not immediately apparent how to solve Equation (3). Thus, we
simplify it even further by setting b(r)=0.

Definition. The equation
dy
7 +a(t)y=0 4

is called the homogeneous first-order linear differential equation, and
Equation (3) is called the nonhomogeneous first-order linear differential
equation for b(¢) not identically zero.

Fortunately, the homogeneous equation (4) can be solved quite easily.
First, divide both sides of the equation by y and rewrite it in the form

dy
dt
—=—a(r).
5 (1)
Second, observe that

dy

d 4

- = 4Ol

where by In| y(¢)| we mean the natural logarithm of |y ()|. Hence Equation
(4) can be written in the form

L 1n)y (1)|= - a(1) 5)



1 First-order differential equations

But this is Equation (2) “essentially” since we can integrate both sides of
(5) to obtain that

In|y (£)|= —fa(z)art+c1

where ¢, is an arbitrary constant of integration. Taking exponentials of
both sides yields

Iy(t)|=exp(— fa(t)dt+cl)=cexr>(— fa(t)dt)
or

'y(t)exp(fa(t)dt) —e. 6)

Now, y (1) exp(fa(t) dt) is a continuous function of time and Equation (6)

states that its absolute value is constant. But if the absolute value of a con-
tinuous function g(¢) is constant then g itself must be constant. To prove
this observe that if g is not constant, then there exist two different times ¢,
and ¢, for which g(¢,)=c and g(¢,)= — ¢. By the intermediate value theo-
rem of calculus g must achieve all values between — ¢ and + ¢ which is im-

possible if | g(#)|=c. Hence, we obtain the equation y(?) exp( f a(?) dt) =c
or

y(t)=cexp(— fa(t)dt). 7

Equation (7) is said to be the general solution of the homogeneous equa-
tion since every solution of (4) must be of this form. Observe that an arbi-
trary constant ¢ appears in (7). This should not be too surprising. Indeed,
we will always expect an arbitrary constant to appear in the general solu-
tion of any first-order differential equation. To wit, if we are given dy /dt
and we want to recover y(¢), then we must perform an integration, and
this, of necessity, yields an arbitrary constant. Observe also that Equation
(4) has infinitely many solutions; for each value of ¢ we obtain a distinct
solution y (2).

Example 1. Find the general solution of the equation (dy /df)+ 2ty =0.
Solution. Here a(1)=2t¢ so that y(f)= cexp( - f2tdt) =ce™".

Example 2. Determine the behavior, as t— o0, of all solutions of the equa-
tion (dy/dt)+ ay =0, a constant.

Solution. The general solution is y(f)=c¢ exp( - f a dt) =ce~ %, Hence if

a <0, all solutions, with the exception of y =0, approach infinity, and if a
>0, all solutions approach zero as t— .

4



1.2 First-order linear differential equations

In applications, we are usually not interested in all solutions of (4).
Rather, we are looking for the specific solution y(¢) which at some initial
time ¢, has the value y,. Thus, we want to determine a function y(¢) such
that

d
% +a(t)y=0, y(t9)=yo )

Equation (8) is referred to as an initial-value problem for the obvious rea-
son that of the totality of all solutions of the differential equation, we are
looking for the one solution which initially (at time ¢;) has the value y,. To
find this solution we integrate both sides of (5) between ¢, and ¢. Thus

f':%ln|y(s)|ds=—ftola(s)ds
and, therefore
y(0)
(%)
Taking exponentials of both sides of this equation we obtain that

y(t) t
m =exp(—'/;0a(s)ds)

In|y (¢)|—In|y(t)|=In

=-— j;’a(s)ds.

(1]

or

»() exp(ftta(s)ds) =1.

Y (to)

The function inside the absolute value sign is a continuous function of
time. Thus, by the argument given previously, it is either identically +1 or
identically —1. To determine which one it is, evaluate it at the point #;
since

)

to

we see that

;((t:)) exp(j;ota(s) ds) =1,

Hence

(D=1 exp(— [ ’a(s)ds)=yoexp( -f ’a(s)ds).

4] lo



1 First-order differential equations

Example 3. Find the solution of the initial-value problem
d
2+ in)y=0,  y(©O)=3.

Solution. Here a(t)=sint so that

t
y()=2 exp( - fo sinsds) =3elcosn 1,

Example 4. Find the solution of the initial-value problem

dy 2 - =
7 +e'y=0, y()=2.

Solution. Here a(f)=e" so that
y(?) =2exp( - fleszds).
1

Now, at first glance this problem would seem to present a very serious dif-
ficulty in that we cannot integrate the function e directly. However, this
solution is equally as valid and equally as useful as the solution to Example
3. The reason for this is twofold. First, there are very simple numerical
schemes to evaluate the above integral to any degree of accuracy with the
aid of a computer. Second, even though the solution to Example 3 is given
explicitly, we still cannot evaluate it at any time ¢ without the aid of a table
of trigonometric functions and some sort of calculating aid, such as a slide
rule, electronic calculator or digital computer.

We return now to the nonhomogeneous equation

% +a(t)y=>b(1).

It should be clear from our analysis of the homogeneous equation that the
way to solve the nonhomogeneous equation is to express it in the form

% (“something”) = b(¢)

and then to integrate both sides to solve for “something”. However, the ex-
pression (dy /df)+ a(t)y does not appear to be the derivative of some sim-
ple expression. The next logical step in our analysis therefore should be the
following: Can we make the left hand side of the equation to be d/dt of
“something”? More precisely, we can multiply both sides of (3) by any
continuous function p(¢) to obtain the equivalent equation

w0 Y +a(yui)y=pp(0). ©)



1.2 First-order linear differential equations

(By equivalent equations we mean that every solution of (9) is a solution of
(3) and vice-versa.) Thus, can we choose p(f) so that p(r)(dy/dt)+
a(t)u(?)y is the derivative of some simple expression? The answer to this
question is yes, and is obtained by observing that
dy d

L y(y=n() T+,
Hence, p(¢)(dy/dt)+ a(t) u(f)y will be equal to the derivative of u(?)y if
and only if du(?)/dt=a(t) u(¢). But this is a first-order linear homoge-
neous equation for u(?), i.e. (du/dr)—a(t) u=0 which we already know
how to solve, and since we only need one such function u(r) we set the
constant ¢ in (7) equal to one and take

u(t)=exp(fa(t)dt).
For this u(¢), Equation (9) can be written as

L L ()y=p(D)b(2). (10)

To obtain the general solution of the nonhomogeneous equation (3), that
is, to find all solutions of the nonhomogeneous equation, we take the indef-
inite integral (anti-derivative) of both sides of (10) which yields

m(t)y= [ w(n)b(r)dr+c
or
1
=—— Hb(t)dt+c)= - t)dt Hb(t)ydr+c). (11
y “(,)(fu() (dr+c)=exp( - [aar)( [ mp(ar+e). ()
Alternately, if we are interested in the specific solution of (3) satisfying
the initial condition y(¢y)=y,, that is, if we want to solve the initial-value
problem

a
Z+a(y=b(n),  »(1)=r

then we can take the definite integral of both sides of (10) between ¢, and ¢
to obtain that
t
K(1)y = B(to) 0= [ 1(5)b(s)ds
or °
1

y=”—(5(u(to)yo+f'0'u(3)b(S)dS)- (12)

Remark 1. Notice how we used our knowledge of the solution of the ho-
mogeneous equation to find the function u(#) which enables us to solve the
nonhomogeneous equation. This is an excellent illustration of how we use
our knowledge of the solution of a simpler problem to solve a harder prob-
lem.
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Remark 2. The function p(t)=exp( f a(t)dt) is called an integrating factor

for the nonhomogeneous equation since after multiplying both sides by
p(?) we can immediately integrate the equation to find all solutions.

Remark 3. The reader should not memorize formulae (11) and (12).
Rather, we will solve all nonhomogeneous equations by first multiplying
both sides by p(¢), by writing the new left-hand side as the derivative of
p(t)y(2), and then by integrating both sides of the equation.

Remark 4. An alternative way of solving the initial-value problem (dy / dr)
+a(r)y=>b(1), y(ty) =y, 1s to find the general solution (11) of (3) and then
use the initial condition y(z;) =y, to evaluate the constant c. If the function
w(1)b(r) cannot be integrated directly, though, then we must take the defi-
nite integral of (10) to obtain (12), and this equation is then approximated
numerically.

Example 5. Find the general solution of the equation (dy/df)—2ty=1.
Solution. Here a(t)= —2t so that

y(t)=exp(fa(t)dt)=exp(——f21dt)=e"2.

Multiplying both sides of the equation by p(7) we obtain the equivalent
equation

e"z(%—-2ty)=te"l or %e"zy=te_'2.
Hence,
e”2y=fte“’zdt+c= _ez—ﬂ +c
and

y(t)=—3+ce".
Example 6. Find the solution of the initial-value problem

& - -
S tw=t y()=2.

Solution. Here a(t)=2t so that
u(t) =exp(fa(1)dt) =exp(f2tdt) =e”
Multiplying both sides of the equation by u(s) we obtain that

e‘z(% +2ty) =te” or ad?(e'zy)= te”.
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Hence,
! !
—/; %e‘zy(s)ds=flse‘zds
so that
s
s €
e y(s)ll— 2 1'
Consequently,
’2
e'y—2e= % - %
and
y= —;— + %e"z—% +2e1-7,

Example 7. Find the solution of the initial-value problem

dy 1

_+ =
a T i

Solution. Here a(t)=1, so that

,u(t)=exp(fa(t)dt)=exp(fldt)=e‘.

Multiplying both sides of the equation by u(¢) we obtain that

17) ' !
e’(F);+y) £ or %e’y= d

r(2)=3.

T4+ 1+
Hence
td 4 es
—e%y(s) ds = ds,
j; ds ¥(s) ,[ 1 + s?
so that
! 5
e’ —3e2=f € s
7 , 1+5?
and
4 s
y=e! 3e2+f € _ds|.
) 1+ 52
EXERCISES

In each of Problems 1-7 find the general solution of the given differential
equation.

dy dy - .
1. —-+ycosi=0 2, E+y\/t sint=0
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ay 21 1 dy

= = 4. — +y=te'
Ty T e ar T
& &y 5 _ 2
E""ly—l 6. E‘*’ty—f
dy ! 3

- =1_
" 1427 T+

In each of Problems 8-14, find the solution of the given initial-value prob-

lem.
8. %+\/1+t2y=0, y@)=V5 9. %+\/1+12e"y=0, y(0)=1
10. %+\/]+12 e =0, y(0)=0 1L %—2ty=1, y©@)=1

dy _ N dy _ 1 -
2. 2 +y=1+1 y(3)=0 Bogtr=rrp 20=2

dy
4 - -2y=1 yO)=I
15. Find the general solution of the equation

(1+t2)%+ty=(1+12)5/2-

16.

17.

18.

19.

(Hint: Divide both sides of the equation by 1+ 2.

Find the solution of the initial-value problem
(1+t2)%+4ty=1, y()=1.

Find a continuous solution of the initial-value problem
y+y=g(), y(0)=0
where

12 0<ex<l
g() {0, t>1

Show that every solution of the equation (dy/dt)+ ay = be ™' where a and ¢
are positive constants and b is any real number approaches zero as ¢ ap-
proaches infinity.

Given the differential equation (dy/dr)+ a(t)y=f(¢) with a(¢) and f(¢) con-
tinuous for — oo <t < o0, a(t) > ¢ >0, and lim,_,, f(£)=0, show that every
solution tends to zero as r approaches infinity.

When we derived the solution of the nonhomogeneous equation we tacitly
assumed that the functions a(7) and b(¢) were continuous so that we could
perform the necessary integrations. If either of these functions was discon-
tinuous at a point ¢,, then we would expect that our solutions might be dis-
continuous at ¢=t,. Problems 20-23 illustrate the variety of things that

10
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may happen. In Problems 20-22 determine the behavior of all solutions of
the given differential equation as —0, and in Problem 23 determine the
behavior of all solutions as t— /2.

& 1 1 . R
2. a1’ 2 2 E-’-ny_e

d 1 sint & —a
22. 7 +7y_cost+—-t 23. Z +ytant=sinfcost.

1.3 The Van Meegeren art forgeries

After the liberation of Belgium in World War 11, the Dutch Field Security
began its hunt for Nazi collaborators. They discovered, in the records of a
firm which had sold numerous works of art to the Germans, the name of a
banker who had acted as an intermediary in the sale to Goering of the
painting “Woman Taken in Adultery” by the famed 17th century Dutch
painter Jan Vermeer. The banker in turn revealed that he was acting on
behalf of a third rate Dutch painter H. A. Van Meegeren, and on May 29,
1945 Van Meegeren was arrested on the charge of collaborating with the
enemy. On July 12, 1945 Van Meegeren startled the world by announcing
from his prison cell that he had never sold “Woman Taken in Adultery” to
Goering. Moreover, he stated that this painting and the very famous and
beautiful “Disciples at Emmaus”, as well as four other presumed Vermeers
and two de Hooghs (a 17th century Dutch painter) were his own work.
Many people, however, thought that Van Meegeren was only lying to save
himself from the charge of treason. To prove his point, Van Meegeren be-
gan, while in prison, to forge the Vermeer painting “Jesus Amongst the
Doctors” to demonstrate to the skeptics just how good a forger of Vermeer
he was. The work was nearly completed when Van Meegeren learned that
a charge of forgery had been substituted for that of collaboration. He,
therefore, refused to finish and age the painting so that hopefully investiga-
tors would not uncover his secret of aging his forgeries. To settle the ques-
tion an international panel of distinguished chemists, physicists and art
historians was appointed to investigate the matter. The panel took x-rays
of the paintings to determine whether other paintings were underneath
them. In addition, they analyzed the pigments (coloring materials) used in
the paint, and examined the paintings for certain signs of old age.

Now, Van Meegeren was well aware of these methods. To avoid detec-
tion, he scraped the paint from old paintings that were not worth much,
just to get the canvas, and he tried to use pigments that Vermeer would
have used. Van Meegeren also knew that old paint was extremely hard,
and impossible to dissolve. Therefore, he very cleverly mixed a chemical,
phenoformaldehyde, into the paint, and this hardened into bakelite when
the finished painting was heated in an oven.

11
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However, Van Meegeren was careless with several of his forgeries, and
the panel of experts found traces of the modern pigment cobalt blue. In
addition, they also detected the phenoformaldehyde, which was not dis-
covered until the turn of the 19th century, in several of the paintings. On
the basis of this evidence Van Meegeren was convicted, of forgery, on Oc-
tober 12, 1947 and sentenced to one year in prison. While in prison he
suffered a heart attack and died on December 30, 1947.

However, even following the evidence gathered by the panel of experts,
many people still refused to believe that the famed “Disciples at Emmaus”
was forged by Van Meegeren. Their contention was based on the fact that
the other alleged forgeries and Van Meegeren’s nearly completed “Jesus
Amongst the Doctors” were of a very inferior quality. Surely, they said, the
creator of the beautiful “Disciples at Emmaus” could not produce such in-
ferior pictures. Indeed, the “Disciples at Emmaus” was certified as an
authentic Vermeer by the noted art historian A. Bredius and was bought
by the Rembrandt Society for $170,000. The answer of the panel to these
skeptics was that because Van Meegeren was keenly disappointed by his
lack of status in the art world, he worked on the “Disciples at Emmaus”
with the fierce determination of proving that he was better than a third
rate painter. After producing such a masterpiece his determination was
gone. Moreover, after seeing how easy it was to dispose of the “Disciples at
Emmaus” he devoted less effort to his subsequent forgeries. This explana-
tion failed to satisfy the skeptics. They demanded a thoroughly scientific
and conclusive proof that the “Disciples at Emmaus” was indeed a forgery.
This was done recently in 1967 by scientists at Carnegie Mellon University,
and we would now like to describe their work.

The key to the dating of paintings and other materials such as rocks and
fossils lies in the phenomenon of radioactivity discovered at the turn of the
century. The physicist Rutherford and his colleagues showed that the
atoms of certain “radioactive” elements are unstable and that within a
given time period a fixed proportion of the atoms spontaneously disin-
tegrates to form atoms of a new element. Because radioactivity is a prop-
erty of the atom, Rutherford showed that the radioactivity of a substance
is directly proportional to the number of atoms of the substance present.
Thus, if N (¢) denotes the number of atoms present at time ¢, then dN / dt,
the number of atoms that disintegrate per unit time is proportional to N,
that is,

dN

dt
The constant A which is positive, is known as the decay constant of the
substance. The larger A is, of course, the faster the substance decays. One
measure of the rate of disintegration of a substance is its half-life which is
defined as the time required for half of a given quantity of radioactive
atoms to decay. To compute the half-life of a substance in terms of A,
assume that at time fy, N ()= N,. Then, the solution of the initial-value

= —AN. (1)

12
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problem dN /dt= —AN, N (t5)= N, is
N(t)=N°exP(—Aflds)=Noe_>‘('_'°)
fo

or N/Ny=exp(—A(1— ty)). Taking logarithms of both sides we obtain that

=Y
At=10) =In - @)
Now, if N/Ny=1 then —\(t—ty)=In] so that
In2 _ 0.6931
(1=t)=="="- )

Thus, the half-life of a substance is In2 divided by the decay constant A.
The dimension of A, which we suppress for simplicity of writing, is recipro-
cal time. If 7 is measured in years then A has the dimension of reciprocal
years, and if ¢ is measured in minutes, then A has the dimension of recipro-
cal minutes. The half-lives of many substances have been determined and
recorded. For example, the half-life of carbon-14 is 5568 years and the
half-life of uranium-238 is 4.5 billion years.

Now the basis of “radioactive dating” is essentially the following. From
Equation (2) we can solve for t—1,=1/AIn(Ny/N). If 1, is the time the
substance was initially formed or manufactured, then the age of the sub-
stance is 1/AIn(N,/N). The decay constant A is known or can be com-
puted, in most instances. Moreover, we can usually evaluate N quite easily.
Thus, if we knew N, we could determine the age of the substance. But this
is the real difficulty of course, since we usually do not know N,. In some
instances though, we can either determine N, indirectly, or else determine
certain suitable ranges for N, and such is the case for the forgeries of Van
Meegeren.

We begin with the following well-known facts of elementary chemistry.
Almost all rocks in the earth’s crust contain a small quantity of uranium.
The uranium in the rock decays to another radioactive element, and that
one decays to another and another, and so forth (see Figure 1) in a series
of elements that results in lead, which is not radioactive. The uranium
(whose half-life is over four billion years) keeps feeding the elements
following it in the series, so that as fast as they decay, they are replaced by
the elements before them.

Now, all paintings contain a small amount of the radioactive element
lead-210 (*'°Pb), and an even smaller amount of radium-226 (***Ra), since
these elements are contained in white lead (lead oxide), which is a pigment
that artists have used for over 2000 years. For the analysis which follows, it
is important to note that white lead is made from lead metal, which, in
turn, is extracted from a rock called lead ore, in a process called smelting.
In this process, the lead-210 in the ore goes along with the lead metal.
However, 90-95% of the radium and its descendants are removed with

13
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1.3 The Van Meergeren art forgeries

other waste products in a material called slag. Thus, most of the supply of
lead-210 is cut off and it begins to decay very rapidly, with a half-life of 22
years. This process continues until the lead-210 in the white lead is once
more in radioactive equilibrium with the small amount of radium present,
i.e. the disintegration of the lead-210 is exactly balanced by the disintegra-
tion of the radium.

Let us now use this information to compute the amount of lead-210 pre-
sent in a sample in terms of the amount originally present at the time of
manufacture. Let y(f) be the amount of lead-210 per gram of white lead
at time ¢, y, the amount of lead-210 per gram of white lead present at
the time of manufacture ¢, and r(¢) the number of disintegrations of
radium-226 per minute per gram of white lead, at time ¢. If A is the decay
constant for lead-210, then

Do Nt y)=e 0

Since we are only interested in a time period of at most 300 years we may
assume that the radium-226, whose half-life is 1600 years, remains con-
stant, so that r(¢) is a constant . Multiplying both sides of the differential
equation by the integrating factor u(f)=e™ we obtain that

i ALy, — oA
mey re™.
Hence
r
(1)~ Myg= £ (M= M)
or

y(1)=5 (1= e M=) 4 ype=2e=0), (5)

Now y () and r can be easily measured. Thus, if we knew y, we could
use Equation (5) to compute (¢ — ¢,) and consequently, we could determine
the age of the painting. As we pointed out, though, we cannot measure y,
directly. One possible way out of this difficulty is to use the fact that the
original quantity of lead-210 was in radioactive equilibrium with the larger
amount of radium-226 in the ore from which the metal was extracted. Let
us, therefore, take samples of different ores and count the number of disin-
tegrations of the radium-226 in the ores. This was done for a variety of
ores and the results are given in Table 1 below. These numbers vary from
0.18 to 140. Consequently, the number of disintegrations of the lead-210
per minute per gram of white lead at the time of manufacture will vary
from 0.18 to 140. This implies that y, will also vary over a very large inter-
val, since the number of disintegrations of lead-210 is proportional to the
amount present. Thus, we cannot use Equation (5) to obtain an accurate,
or even a crude estimate, of the age of a painting.

15
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Table 1. Ore and ore concentrate samples. All disintegration rates
are per gram of white lead.

Description and Source Disintegrations per minute of 2°Ra
Ore concentrate  (Oklahoma-Kansas) 4.5
Crushed raw ore  (S.E. Missouri) 24
Ore concentrate  (S.E. Missouri) 0.7
Ore concentrate  (Idaho) 22
Ore concentrate  (Idaho) 0.18
Ore concentrate  (Washington) 140.0
Ore concentrate  (British Columbia) 1.9
Ore concentrate  (British Columbia) 04
Ore concentrate  (Bolivia) 1.6
Ore concentrate  (Australia) 1.1

However, we can still use Equation (5) to distinguish between a 17th
century painting and a modern forgery. The basis for this statement is the
simple observation that if the paint is very old compared to the 22 year
half-life of lead, then the amount of radioactivity from the lead-210 in the
paint will be nearly equal to the amount of radioactivity from the radium
in the paint. On the other hand, if the painting is modern (approximately
20 years old, or so) then the amount of radioactivity from the lead-210 will
be much greater than the amount of radioactivity from the radium.

We make this argument precise in the following manner. Let us assume
that the painting in question is-either very new or about 300 years old. Set
t— t,=1300 years in (5). Then, after some simple algebra, we see that

No=Ay (1) — r (3% —1). (6)

If the painting is indeed a modern forgery, then Ay, will be absurdly
large. To determine what is an absurdly high disintegration rate we observe
(see Exercise 1) that if the lead-210 decayed originally (at the time of
manufacture) at the rate of 100 disintegrations per minute per gram of
white lead, then the ore from which it was extracted had a uranium con-
tent of approximately 0.014 per cent. This is a fairly high concentration of
uranium since the average amount of uranium in rocks of the earth’s crust
is about 2.7 parts per million. On the other hand, there are some very rare
ores in the Western Hemisphere whose uranium content is 2-3 per cent. To
be on the safe side, we will say that a disintegration rate of lead-210 is cer-
tainly absurd if it exceeds 30,000 disintegrations per minute per gram of
white lead.

To evaluate Ay,, we must evaluate the present disintegration rate, Ay (),
of the lead-210, the disintegration rate r of the radium-226, and ¢°°®. Since
the disintegration rate of polonium-210 (*'°Po) equals that of lead-210 after
several years, and since it is easier to measure the disintegration rate of
polonium-210, we substitute these values for those of lead-210. To compute

16
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€30 we observe from (3) that A =(In2/22). Hence

@300\ — £ (300/22)In2 _ 5(150/11).

The disintegration rates of polonium-210 and radium-226 were measured
for the “Disciples at Emmaus” and various other alleged forgeries and are
given in Table 2 below.

Table 2. Paintings of questioned authorship. All disintegration
rates are per minute, per gram of white lead.

Description 210po disintegration | 2?°Ra disintegration
“Disciples at Emmaus” 8.5 0.8
“Washing of Feet” 12.6 0.26
“Woman Reading Music” 10.3 0.3
“Woman Playing Mandolin” 8.2 0.17

“Lace Maker” 1.5 1.4
“Laughing Girl” 5.2 6.0

If we now evaluate Ay, from (6) for the white lead in the painting “Disci-
ples at Emmaus” we obtain that

Ayo=(8.5)2150/11 — 0.8(2'%0/1 —1)
=98,050

which is unacceptably large. Thus, this painting must be a modern forgery.
By a similar analysis, (see Exercises 2-4) the paintings “Washing of Feet”,
“Woman Reading Music” and “Woman Playing Mandolin” were indisput-
ably shown to be faked Vermeers. On the other hand, the paintings “Lace
Maker” and “Laughing Gir]” cannot be recently forged Vermeers, as
claimed by some experts, since for these two paintings, the polonium-210 is
very nearly in radioactive equilibrium with the radium-226, and no such
equilibrium has been observed in any samples from 19th or 20th century
paintings.
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EXERCISES

1.

In this exercise we show how to compute the concentration of uranium in an

ore from the dpm/(g of Pb) of the lead-210 in the ore.

(a) The half-life of uranium-238 is 4.51 X 10° years. Since this half-life is so
large, we may assume that the amount of uranium in the ore is constant
over a period of two to three hundred years. Let N (¢) denote the number of
atoms of 238U per gram of ordinary lead in the ore at time . Since the
lead-210 is in radioactive equilibrium with the uranium-238 in the ore, we
know that dN /dt=—AN= —100 dpm/g of Pb at time #,. Show that there
are 3.42x 107 atoms of uranium-238 per gram of ordinary lead in the ore
at time #,. (Hint: 1 year= 525,600 minutes.)

(b) Using the fact that one mole of uranium-238 weighs 238 grams, and that
there are 6.02 X 10?2 atoms in a mole, show that the concentration of
uranium in the ore is approximately 0.014 percent.

For each of the paintings 2, 3, and 4 use the data in Table 2 to compute
the disintegrations per minute of the original amount of lead-210 per gram

of

white lead, and conclude that each of these paintings is a forged

Vermeer.

2.

18

“Washing of Feet”

. “Woman Reading Music”

3
4.
5

“Woman Playing Mandolin”

. The following problem describes a very accurate derivation of the age of

uranium.

(a) Let Ny3e(f) and N35(2) denote the number of atoms of 238U and 2*°U at
time 7 in a given sample of uranium, and let 7=0 be the time this sample
was created. By the radioactive decay law,

—In2

@ 5)109N238( )

d
7 Nyg ()=

—Nyss (1 )-W Npss ().

Solve these equations for N,34(f) and N,35(¢) in terms of their original num-
bers N,33(0) and N,35(0).

(b) In 1946 the ratio of ***U/?**U in any sample was 137.8. Assuming that
equal amounts of 23¥U and 235U appeared in any sample at the time of its
creation, show that the age of uranium is 5.96 X 10° years. This figure is
universally accepted as the age of uranium.

. In a samarskite sample discovered recently, there was 3 grams of Thorium

(**TH). Thorium decays to lead-208 (2°*Pb) through the reaction 2*2Th—2%Pb
+6(4“He). It was determined that 0.0376 of a gram of lead-208 was produced
by the disintegration of the original Thorium in the sample. Given that the
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half-life of Thorium is 13.9 billion years, derive the age of this samarskite sam-
ple. (Hint: 0.0376 grams of 2%Pb is the product of the decay of (232/208) x
0.0376 grams of Thorium.)

One of the most accurate ways of dating archaeological finds is the method
of carbon-14 ('*C) dating discovered by Willard Libby around 1949. The basis
of this method is delightfully simple: The atmosphere of the earth is continu-
ously bombarded by cosmic rays. These cosmic rays produce neutrons in the
earth’s atmosphere, and these neutrons combine with nitrogen to produce '4C,
which is usually called radiocarbon, since it decays radioactively. Now, this ra-
diocarbon is incorporated in carbon dioxide and thus moves through the atmo-
sphere to be absorbed by plants. Animals, in turn, build radiocarbon into their
tissues by eating the plants. In living tissue, the rate of ingestion of '*C exactly
balances the rate of disintegration of 'C. When an organism dies, though, it
ceases to ingest carbon-14 and thus its '*C concentration begins to decrease
through disintegration of the '%C present. Now, it is a fundamental assumption
of physics that the rate of bombardment of the earth’s atmosphere by cosmic
rays has always been constant. This implies that the original rate of disintegra-
tion of the '*C in a sample such as charcoal is the same as the rate measured
today.* This assumption enables us to determine the age of a sample of char-
coal. Let N (#) denote the amount of carbon-14 present in a sample at time ¢,
and N, the amount present at time =0 when the sample was formed. If A de-
notes the decay constant of '*C (the half-life of carbon-14 is 5568 years) then
dN (t)/dt=—AN (1), N (0)= N,. Consequently, N (1)= Nge ~™. Now the present
rate R (¢) of disintegration of the '*C in the sample is given by R (£)=AN (1)=
ANge ~M and the original rate of disintegration is R (0)=AN,. Thus, R(1)/R(0)
=¢~M 50 that t=(1/A)In[R (0)/ R (1)]. Hence if we measure R (r), the present
rate of disintegration of the '*C in the charcoal, and observe that R (0) must
equal the rate of disintegration of the '“C in a comparable amount of living
wood, then we can compute the age ¢ of the charcoal. The following two prob-
lems are real life illustrations of this method.

7. Charcoal from the occupation level of the famous Lascaux Cave in France
gave an average count in 1950 of 0.97 disintegrations per minute per gram.
Living wood gave 6.68 disintegrations. Estimate the date of occupation and
hence the probable date of the remarkable paintings in the Lascaux Cave.

8. In the 1950 excavation at Nippur, a city of Babylonia, charcoal from a roof
beam gave a count of 4.09 disintegrations per minute per gram. Living wood
gave 6.68 disintegrations. Assuming that this charcoal was formed during the
time of Hammurabi’s reign, find an estimate for the likely time of Hamurabi’s
succession.

*Since the mid 1950’ the testing of nuclear weapons has significantly increased the amount of
radioactive carbon in our atmosphere. Ironically this unfortunate state of affairs provides us
with yet another extremely powerful method of detecting art forgeries. To wit, many artists’
materials, such as linseed oil and canvas paper, come from plants and animals, and so will
contain the same concentration of carbon-14 as the atmosphere at the time the plant or
animal dies. Thus linseed oil (which is derived from the flax plant) that was produced during
the last few years will contain a much greater concentration of carbon-14 than linseed oil pro-
duced before 1950.
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1.4 Separable equations
We solved the first-order linear homogeneous equation

d
= +a(1)y=0 ()

by dividing both sides of the equation by y(¢) to obtain the equivalent
equation

dy(t
1 (@)

y(t) dt - a(t) (2)
and observing that Equation (2) can be written in the form

d [ Jp—"

L in)y (1) = = a(2). 3)

We then found In|y(?)|, and consequently y(¢), by integrating both sides of
(3). In an exactly analogous manner, we can solve the more general dif-
ferential equation

@ _ 2()
a  f(y)
where f and g are continuous functions of y and ¢. This equation, and any
other equation which can be put into this form, is said to be separable. To

solve (4), we first multiply both sides by f(y) to obtain the equivalent
equation

4)

dy
F) = =8(1). (5)
Then, we observe that (5) can be written in the form
d
LF(y(1)=8(1) (6)

where F(y) is any anti-derivative of f(y); i.e., F(y)=ff(y)dy. Conse-
quently,

F(y(0)= [ g(t)di+c (7)
where ¢ is an arbitrary constant of integration, and we solve for y =y(¢)

from (7) to find the general solution of (4).

Example 1. Find the general solution of the equation dy /dr=¢*/y2.
Solution. Multiplying both sides of this equation by y? gives

dy d »’Q
YaTh o g3 T

Hence, y*(f)= >+ ¢ where c is an arbitrary constant, and y ()= (¢>+ ¢)'/>.
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1.4 Separable equations

Example 2. Find the general solution of the equation

d-y
y X 3=
e 7 t—t°=0.

Solution. This equation can be written in the form

FARTO NP

a e t+t

and thus ¢”® =¢2/2+ t*/4 + c. Taking logarithms of both sides of this
equation gives y(¢)=In(12/2+t*/4+¢).

In addition to the differential equation (4), we will often impose an ini-
tial condition on y(¢) of the form y(¢,)=y,. The differential equation (4)
together with the initial condition y (1) =y, is called an initial-value prob-
lem. We can solve an initial-value problem two different ways. Either we
use the initial condition y(z;) =y, to solve for the constant ¢ in (7), or else
we integrate both sides ot (6) between ¢, and ¢ to obtain that

F(y(0)=F(po)= [ "g(s)ds. (8)
If we now observe that ’
F(»)=F(yo)= [ f(r)dr, ©)

then we can rewrite (8) in the simpler form

fyyf(r)dr=j:tg(s)ds. (10)

Example 3. Find the solution y(#) of the initial-value problem
d-y
y 3y — —
e ——,t—(t+t)—0, y()=1.

Solution. Method (i). From Example 2, we know that the general solution
of this equation is y =In(#>/2+t*/4+c). Setting t=1 and y =1 gives 1=
In(3/4+¢), or c=e—3/4. Hence, y(¢)=In(e—3/4+12/2+ 1*/4).

Method (ii). From (10),

j;ye’dr= flt(s + 5%) ds.

Consequently,
.e”—e=t—2+t—4—l—l and y(t)=In(e—3/4+12/2+1%/4)
2 4 2 4 '

Example 4. Solve the initial-value problem dy /dr=1+y?, y(0)=0.
Solution. Divide both sides of the differential equation by 1+ y? to obtain
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1 First-order differential equations

the equivalent equation 1/(1+y%)dy/dt=1. Then, from (10)

Y dr t
———= | ds.
,/(; 1+ 2 j(;

Consequently, arctany = ¢, and y =tant.

The solution y =tant of the above problem has the disturbing property
that it goes to * oo at t= *« /2. And what’s even more disturbing is the
fact that there is nothing at all in this initial-value problem which even
hints to us that there is any trouble at r= + 7 /2. The sad fact of life is that
solutions of perfectly nice differential equations can go to infinity in finite
time. Thus, solutions will usually exist only on a finite open interval a < ¢t <
b, rather than for all time. Moreover, as the following example shows, dif-
ferent solutions of the same differential equation usually go to infinity at
different times.

Example 5. Solve the initial-value problem dy /dt=1+y2 y(0)=1.

Solution. From (10)
y dr t
= | ds.
./; 1+ r? v/(;

Consequently, arctany —arctan 1 =¢, and y =tan(¢ + 7 /4). This solution
exists on the open interval ~37/4<t<m/4.

Example 6. Find the solution y(¢) of the initial-value problem

y%+(l+y2)sint=0, y(0)=1.
Solution. Dividing both sides of the differential equation by 1+ y? gives
4 d_y = —gint

1+y?% dt
Consequently,

Y rdr e

—— = | —sinsds,

_/1‘ 1+ r2 fo

so that

3In(1+y?)—1n2=cost—1.
Solving this equation for y(¥) gives
y(t)= Qe siti/2_1)!/?,

To determine whether we take the plus or minus branch of the square root,
we note that y(0) is positive. Hence,
y(t) = (2e-4sin21/2 _ 1)1/2
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1.4 Separable equations

This solution is only defined when
2e~4sin*1/2 5 |
or
etint/2< ), (11)
Since the logarithm function is monotonic increasing, we may take loga-

rithms of both sides of (11) and still preserve the inequality. Thus, 4sin®¢/2
< In2, which implies that

Vin2
2

t .
—|<arcsin
2

Therefore, y(¢) only exists on the open interval (— a,a) where
a=2arcsin[ Vin2 /2].

Now, this appears to be a new difficulty associated with nonlinear equa-
tions, since y(#) just “disappears” at ¢= * g, without going to infinity.
However, this apparent difficulty can be explained quite easily, and more-
over, can even be anticipated, if we rewrite the differential equation above
in the standard form

dy (1+y?)sint

dt y
Notice that this differential equation is not defined when y =0. Therefore,
if a solution y(¢) achieves the value zero at some time ¢=t*, then we

cannot expect it to be defined for 7> r*. This is exactly what happens here,
since y(* a)=0.

Example 7. Solve the initial-value problem dy /dr=(1+y)t, y(0)= —1.

Solution. In this case, we cannot divide both sides of the differential equa-
tion by 1+y, since y(0)= — 1. However, it is easily seen that y(f)= —1 is
one solution of this initial-value problem, and in Section 1.10 we show that
it is the only solution. More generally, consider the initial-value problem

dy/dt=f(y)g(1), y(t) =yo where f(yo)=0. Certainly, y(1)=y, is one
solution of this initial-value problem, and in Section 1.10 we show that it is
the only solution if df/dy exists and is continuous.

Example 8. Solve the initial-value problem
(1+e”)dy/di=cost, y(n/2)=3.
Solution. From (10),

t
fy(l +e’)dr=f cossds
3 n/2
so that y + e =2+ > +sint. This equation cannot be solved explicitly for y
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1 First-order differential equations

as a function of ¢. Indeed, most separable equations cannot be solved ex-
plicitly for y as a function of ¢. Thus, when we say that

y+e=2+e>+sins

is the solution of this initial-value problem, we really mean that it is an im-
plicit, rather than an explicit solution. This does not present us with any
difficulties in applications, since we can always find y(¢) numerically with
the aid of a digital computer (see Section 1.11).

Example 9. Find all solutions of the differential equation dy /dt=—1/y.
Solution. Multiplying both sides of the differential equation by y gives
ydy/dt=—1t. Hence

yi+i=ct (12)

Now, the curves (12) are closed, and we cannot solve for y as a single-val-
ued function of . The reason for this difficulty, of course, is that the dif-
ferential equation is not defined when y =0. Nevertheless, the circles 2+ y?
= ¢? are perfectly well defined, even when y =0. Thus, we will call the

circles 12+ y2=¢? solution curves of the differential equation
dy/dt=—1/y.

More generally, we will say that any curve defined by (7) is a solution
curve of (4).

EXERCISES

In each of Problems 1-5, find the general solution of the given differential
equation.

dy tanx +tany
Y _ 2 pris. =
1L (1+¢ )dt 1+y“. Hint: tan(x+y) [—tanxtany

d
2. 2 1+ 1)(1+y) 3. Y iy

t dr

d a

4. Yo prrres 5. cosysint—y=sinycost

t dt

In each of Problems 6-12, solve the given initial-value problem, and de-
termine the interval of existence of each solution.

&
6. t2(l+y2)+2y7);=0, y(O)=1
dy 2t
A . y(2)=3
&= g (2
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&
8. (1+A)2 2 =21 +712, y(©)=1

& 3:2+41+2

9, =", y(0)=-1
@~ -0 y(0)
dy _ —tsiny _
10. cosyE—th—, y()==/2

d
11, Zy? —k(a—y)b-y), y©)=0,a,b>0

4
12. BtE =ycost, y(1)=0

13. Any differential equation of the form dy/dt=f(y) is separable. Thus, we can
solve all those first-order differential equations in which time does not appear
explicitly. Now, suppose we have a differential equation of the form dy/dt=
f(¥ /1), such as, for example, the equation dy /dt=sin(y /). Differential equa-
tions of this form are called homogeneous equations. Since the right-hand side
only depends on the single variable y /¢, it suggests itself to make the substitu-

tiony/t=v ory=tv.

(a) Show that this substitution replaces the equation dy/dt=f(y/t) by the

equivalent equation tdv/dt+ v=f(v), which is separable.

(b) Find the general solution of the equation dy/dt=2(y/t)+(y /1)

14. Determine whether each of the following functions of ¢ and y can be expressed

as a function of the single variable y /1.

2 3 3

ye+2y y o+
(@) (b)

y2 ytz+y3

3 3

y o+t t+y
(C) m (d) 1ny—lnt+tTy-

el+y . o
(e) - () InVi+y —InVi—y

_tty (2+Tp+9)"?
&) sini—y N T

15. Solve the initial-value problem t(dy /dr)=y + \V *+y? , y(1)=0.

Find the general solution of the following differential equations.

d ., dy
16. 20y = =3y’ 17. (1= Viy ) =y
dy t+y
8 ==

&
19 e (y =)o +y(1+e"/)=0

. v—1 v
{Hmt:fmdv=ln(l+vel/)
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1 First-order differential equations

20. Consider the differential equation

dy 1+y+1

= *
dt t—y+3’ *)

We could solve this equation if the constants 1 and 3 were not present. To

eliminate these constants, we make the substitution t=7T+h, y=Y+k.

(a) Determine 4 and k so that (*) can be written in the form dY/dT =
(T+ Y)/(T - Y).

(b) Find the general solution of (*). (See Exercise 18).

21. (a) Prove that the differential equation

dy _ar+by+m
dit ct+dy+n

where a, b, ¢, d, m, and n are constants, can always be reduced to dy/dt =
(at+ by)/(ct + dy) if ad— bc #0.
(b) Solve the above equation in the special case that ad = bc.

Find the general solution of the following equations.
22, (1+:—-2y)+(d1=3y—6)dy/di=0
23, (1+2+3)+Qr+4y — dy /dt =0

1.5 Population models

In this section we will study first-order differential equations which govern
the growth of various species. At first glance it would seem impossible to
model the growth of a species by a differential equation since the popula-
tion of any species always changes by integer amounts. Hence the popula-
tion of any species can never be a differentiable function of time. How-
ever, if a given population is very large and it is suddenly increased by one,
then the change is very small compared to the given population. Thus, we
make the approximation that large populations change continuously and
even differentiably with time.

Let p(t) denote the population of a given species at time ¢ and let r(¢,p)
denote the difference between its birth rate and its death rate. If this
population is isolated, that is, there is no net immigration or emigration,
then dp / dt, the rate of change of the population, equals rp(¢). In the most
simplistic model we assume that r is constant, that is, it does not change
with either time or population. Then, we can write down the following dif-
ferential equation governing population growth:

dp(t
# =ap(1), a = constant.
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1.5 Population models

This is a linear equation and is known as the Malthusian law of population
growth. If the population of the given species is p, at time ¢, then p(¢)
satisfies the initial-value problem dp(¢)/dt=ap(t), p(t;)=p, The solution
of this initial-value problem is p(f)=pye®“~*). Hence any species satisfying
the Malthusian law of population growth grows exponentially with time.

Now, we have just formulated a very simple model for population
growth; so simple, in fact, that we have been able to solve it completely in a
few lines. It is important, therefore, to see if this model, with its simplicity,
has any relationship at all with reality. Let p(¢) denote the human popula-
tion of the earth at time ¢. It was estimated that the earth’s human
population was increasing at an average rate of 2% per year during the
period 1960-1970. Let us start in the middle of this decade on January 1,
1965, at which time the U.S. Department of Commerce estimated the earth’s
population to be 3.34 billion people. Then, t, =1965, p, =3.34X10° and
a=.02, so that

(1) =(3.34)10% 021969,

One way of checking the accuracy of this formula is to compute the time
required for the population of the earth to double, and then compare it to
the observed value of 35 years. Our formula predicts that the population of
the earth will double every T years, where

e02T=17

Taking logarithms of both sides of this equation gives .027=1n2, so that
T=501In2 = 34.6 years.

This is in excellent agreement with the observed value. On the other hand,
though, let us look into the distant future. Our equation predicts that the
earth’s population will be 200,000 billion in the year 2515, 1,800,000 billion
in the year 2625, and 3,600,000 billion in the year 2660. These are astro-
nomical numbers whose significance is difficult to gauge. The total surface
of this planet is approximately 1,860,000 billion square feet. Eighty percent
of this surface is covered by water. Assuming that we are willing to live on
boats as well as land, it is easy to see that by the year 2515 there will be only
9.3 square feet per person; by 2625 each person will have only one square
foot on which to stand; and by 2660 we will be standing two deep on each
other’s shoulders.

It would seem therefore, that this model is unreasonable and should be
thrown out. However, we cannot ignore the fact that it offers exceptional
agreement in the past. Moreover, we have additional evidence that popula-
tions do grow exponentially. Consider the Microtus Arvallis Pall, a small
rodent which reproduces very rapidly. We take the unit of time to be a
month, and assume that the population is increasing at the rate of 40% per
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1 First-order differential equations

month. If there are two rodents present initially at time ¢ =0, then p(7), the
number of rodents at time ¢, satisfies the initial-value problem

dp(t)/dt=04p, p(0)=2.

Consequently,
p(1)=2*. (1)

Table 1 compares the observed population with the population calculated
from Equation (1).

Table 1. The growth of Microtus Arvallis Pall.

Months 0 2 6 10
p Observed 2 5 20 109
p Calculated 2 4.5 22 109.1

As one can see, there is excellent agreement.

Remark. In the case of the Microtus Arvallis Pall, p observed is very ac-
curate since the pregnancy period is three weeks and the time required for
the census taking is considerably less. If the pregnancy period were very
short then p observed could not be accurate since many of the pregnant ro-
dents would have given birth before the census was completed.

The way out of our dilemma is to observe that linear models for popula-
tion growth are satisfactory as long as the population is not too large.
When the population gets extremely large though, these models cannot be
very accurate, since they do not reflect the fact that individual members
are now competing with each other for the limited living space, natural re-
sources and food available. Thus, we must add a competition term to our
linear differential equation. A suitable choice of a competition term is
— bp?, where b is a constant, since the statistical average of the number of
encounters of two members per unit time is proportional to p2. We con-
sider, therefore, the modified equation

dp )
E—ap—bp .

This equation is known as the logistic law of population growth and the
numbers a,b are called the vital coefficients of the population. It was first
introduced in 1837 by the Dutch mathematical-biologist Verhulst. Now,
the constant b, in general, will be very small compared to a, so that if p is
not too large then the term — bp? will be negligible compared to ap and the
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1.5 Population models

population will grow exponentially. However, when p is very large, the
term — bp? is no longer negligible, and thus serves to slow down the rapid
rate of increase of the population. Needless to say, the more industrialized
a nation is, the more living space it has, and the more food it has, the
smaller the coefficient b is.

Let us now use the logistic equation to predict the future growth of an
isolated population. If p, is the population at time ¢,, then p(), the popula-
tion at time 1z, satisfies the initial-value problem

dp
— =@—bp’  p(lg)=ro
This is a separable differential equation, and from Equation (10), Section

1.4,
P ‘
= ds=t—t,
fo ar— br? jt-o 0

P

To integrate the function 1/(ar— br?) we resort to partial fractions. Let
1 _ 1 _A4 B
ar—br2 r(a—br) r a—br’
To find A and B, observe that
A B A(a—bry+Br Aa+(B-bA)r

r a—-br r(a—br) B r(a—br)

Therefore, Aa+ (B — bA)r=1. Since this equation is true for all values of r,
we see that Ada=1 and B— b4 =0. Consequently, 4=1/a, B=b/a, and

Podr 1 (P(1 b
f r(a—br)—af (r+a—br)dr
Po Po

1|, P a—bp, 1, p|a—bp
=—|ln—+In ==In— .
al  po a—bp a po|a—bp
Thus,
p |a—bp,
a(t—ty)=In— . 2
(1= tg)=hn- @

Now, it is a simple matter to show (see Exercise 1) that

a—bp,
a—bp(1)
is always positive. Hence,
p a— bpy
a(t — ty) =In& —
( 0) Do a— bp
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Taking exponentials of both sides of this equation gives
pa- bp,
po a—bp’

ea(t— 1) =
or

po(a—bp)e?==(a—bp,)p.

Bringing all terms involving p to the left-hand side of this equation, we see
that

[a_ bp0+ bpoea(l_"’)JP(t)=apo€a('—t°)-
Consequently,
apoea(t— 1o) ap,

B a—bpy,+ bpoe“(’_’*’) bp0+(a—bp0)e‘“("’°) '

p(?) €)
Let us now examine Equation (3) to see what kind of population it pre-
dicts. Observe that as t— o0,

apg _a
p(l)—) bPo - b’

Thus, regardless of its initial value, the population always approaches the
limiting value a/b. Next, observe that p(r) is a monotonically increasing
function of time if 0<py<a/b. Moreover, since

d? dj d

S =ag g =(a=2bp)p(atp),
we see that dp /dr is increasing if p(1) < a/2b, and that dp/dt is decreasing
if p(1)>a/2b. Hence, if p,<a/2b, the graph of p(r) must have the form
given in Figure 1. Such a curve is called a logistic, or S-shaped curve.
From its shape we conclude that the time period before the population
reaches half its limiting value is a period of accelerated growth. After this
point, the rate of growth decreases and in time reaches zero. This is a
period of diminishing growth.

These predictions are borne out by an experiment on the protozoa
Paramecium caudatum performed by the mathematical biologist G. F.
Gause. Five individuals of Paramecium were placed in a small test tube
containing 0.5 cm® of a nutritive medium, and for six days the number of
individuals in every tube was counted daily. The Paramecium were found
to increase at a rate of 230.9% per day when their numbers were low. The
number of individuals increased rapidly at first, and then more slowly, un-
til towards the fourth day it attained a .maximum level of 375, saturating
the test tube. From this data we conclude that if the Paramecium cauda-
tum grow according to the logistic law dp /dt = ap — bp?, then a=2.309 and
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ey p(t)

1 — = t

t

Figure 1. Graph of p(¢)

b=2.309/375. Consequently, the logistic law predicts that

(2.309)5
P(0="330975 (2.309)5
—— {2309 —— |e 2
375 375
375
T 1+ 74023 ©

(We have taken the initial time ¢, to be 0.) Figure 2 compares the graph of
p(?) predicted by Equation (4) with the actual measurements, which are de-
noted by o. As can be seen, the agreement is remarkably good.

In order to apply our results to predict the future human population of
the earth, we must estimate the vital coefficients a and b in the logistic
equation governing its growth. Some ecologists have estimated that the na-
tural value of a is 0.029. We also know that the human population was in-
creasing at the rate of 2% per year when the population was (3.34)10°.
Since (1/p)(dp/dt)=a— bp, we see that

0.02=a— b (3.34)10°.
Consequently, b=2.695X10"'2. Thus, according to the logistic law of

population growth, the human population of the earth will tend to the

limiting value of
a 0.029
—=——""""=10.76 billion people
b 2695%x10712 peop

Note that according to this prediction, we were still on the accelerated
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Figure 2. The growth of paramecium

growth portion of the logistic curve in 1965, since we had not yet attained
half the limiting population predicted for us.

Remark. A student of mine once suggested that we use Equation (3) to find
the time ¢ at which p(#) = 2, and then we can deduce how long ago mankind
appeared on earth. On the surface this seems like a fantastic idea. However,
we cannot travel that far backwards into the past, since our model is no
longer accurate when the population is small.

As another verification of the validity of the logistic law of population
growth, we consider the equation

197,273,000
p(n)= | + ¢~ 003134(1— 1913.25) )

which was introduced by Pearl and Reed as a model of the population
growth of the United States. First, using the census figures for the years
1790, 1850, and 1910, Pearl and Reed found from (3) (see Exercise 2a) that
a=0.03134 and »=(1.5887)10"'°. Then (see Exercise 2b), Pearl and Reed
calculated that the population of the United States reached half its limiting
population of a/b=197,273,000 in April 1913. Consequently (see Exercise
2c), we can rewrite (3) in the simpler form (5).

Table 2 below compares Pearl and Reed’s predictions with the observed
values of the population of the United States. These results are remarkable,
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Table 2. Population of the U.S. from 1790-1950. (The last 4 entries
were added by the Dartmouth College Writing Group.)

Actual Predicted Error %
1790 3,929,000 3,929,000 0 0.0
1800 5,308,000 5,336,000 28,000 0.5
1810 7,240,000 7,228,000 - 12,000 -0.2
1820 9,638,000 9,757,000 119,000 1.2
1830 12,866,000 13,109,000 243,000 1.9
1840 17,069,000 17,506,000 437,000 2.6
1850 23,192,000 23,192,000 0 0.0
1860 31,443,000 30,412,000 — 1,031,000 -33
1870 38,558,000 39,372,000 814,000 2.1
1880 50, 156,0070 50,177,000 21,000 0.0
1890 62,948,000 62,769,000 — 179,000 -03
1900 75,995,000 76,870,000 875,000 1.2
1910 91,972,000 91,972,000 0 0.0
1920 105,711,000 107,559,000 1,848,000 1.7
1930 122,775,000 123,124,000 349,000 0.3
1940 131,669,000 136,653,000 4,984,000 3.8
1950 150,697,000 149,053,000 — 1,644,000 -1

especially since we have not taken into account the large waves of im-
migration into the United States, and the fact that the United States was
involved in five wars during this period.

In 1845 Verhulst prophesied a maximum population for Belgium of
6,600,000, and a maximum population for France of 40,000,000. Now, the
population of Belgium in 1930 was already 8,092,000. This large dis-
crepancy would seem to indicate that the logistic law of population growth
is very inaccurate, at least as far as the population of Belgium is con-
cerned. However, this discrepancy can be explained by the astonishing rise
of industry in Belgium, and by the acquisition of the Congo which secured
for the country sufficient additional wealth to support the extra popula-
tion. Thus, after the acquisition of the Congo, and the astonishing rise of
industry in Belgium, Verhulst should have lowered the vital coefficient b.

On the other hand, the population of France in 1930 was in remarkable
agreement with Verhulst’s forecast. Indeed, we can now answer the follow-
ing tantalizing paradox: Why was the population of France increasing
extremely slowly in 1930 while the French population of Canada was in-
creasing very rapidly? After all, they are the same people! The answer to
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this paradox, of course, is that the population of France in 1930 was very
near its limiting value and thus was far into the period of diminishing
growth, while the population of Canada in 1930 was still in the period of
accelerated growth.

Remark 1. It is clear that technological developments, pollution considera-
tions and sociological trends have significant influence on the vital coef-
ficients a and b. Therefore, they must be re-evaluated every few years.

Remark 2. To derive more accurate models of population growth, we
should not consider the population as made up of one homogeneous group
of individuals. Rather, we should subdivide it into different age groups. We
should also subdivide the population into males and females, since the re-
production rate in a population usually depends more on the number of
females than on the number of males.

Remark 3. Perhaps the severest criticism leveled at the logistic law of
population growth is that some populations have been observed to
fluctuate periodically between two values, and any type of fluctuation is
ruled out in a logistic curve. However, some of these fluctuations can be
explained by the fact that when certain populations reach a sufficiently
high density, they become susceptible to epidemics. The epidemic brings
the population down to a lower value where it again begins to increase,
until when it is large enough, the epidemic strikes again. In Exercise 10 we
derive a model to describe this phenomenon, and we apply this model in
Exercise 11 to explain the sudden appearance and disappearance of hordes
of small rodents.

Epilog. The following article appeared in the New York Times on March
26, 1978, and was authored by Nick Eberstadt.

The gist of the following article is that it is very difficult, using statistical
methods alone, to make accurate population projections even 30 years into
the future. In 1970, demographers at the United Nations projected the
population of the earth to be 6.5 billion people by the year 2000. Only six
years later, this forecast was revised downward to 5.9 billion people.

Let us now use Equation (3) to predict the population of the earth in the
year 2000. Setting a =.029, b =2.695X 1072, p, = 3.34X 10°, t, = 1965, and
t =2,000 gives

(.029)(3.34)10°
009+ (.02) e~ 0293

_ 290334

9+20e™ 101
= 5.96 billion people!

p(2000) =

This is another spectacular application of the logistic equation.
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1.5 Population models
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EXERCISES

1.

Prove that (a — bpy)/(a— bp(?)) is positive for 1y <t < 0. Hint: Use Equation (2)
to show that p(#) can never equal a/b if py=a/b.

. (a) Choose 3 times ¢, ¢;, and t,, with ¢, — ty=1,—t,. Show that (3) determines a

and b uniquely in terms of #y, p(2y), 1}, P(2)), t5, and p(t,).

(b) Show that the period of accelerated growth for the United States ended in
April, 1913. )

(c) Let a population p(#) grow according to the logistic law (3), and let ¢ be the
time at which half the limiting population is achieved. Show that

a/b

p()=———.
L+ e-at-)

. In 1879 and 1881 a number of yearling bass were seined in New Jersey, taken

across the continent in tanks by train, and planted in San Francisco Bay. A total
of only 435 Striped Bass survived the rigors of these two trips. Yet, in 1899, the
commercial net catch alone was 1,234,000 pounds. Since the growth of this
population was so fast, it is reasonable to assume that it obeyed the Malthusian
law dp / dt = ap. Assuming that the average weight of a bass fish is three pounds,
and that in 1899 every tenth bass fish was caught, find a lower bound for a.

. Suppose that a population doubles its original size in 100 years, and triples it in

200 years. Show that this population cannot satisfy the Malthusian law of
population growth.

. Assume that p(¢) satisfies the Malthusian law of population growth. Show that

the increases in p in successive time intervals of equal duration form the terms of
a geometric progression. This is the source of Thomas Malthus’ famous dictum
“Population when unchecked increases in a geometrical ratio. Subsistence
increases only in an arithmetic ratio. A slight acquaintance with numbers will
show the immensity of the first power in comparison of the second.”

A population grows according to the logistic law, with a limiting population of
5% 10® individuals. When the population is low it doubles every 40 minutes.
What will the population be after two hours if initially it is (a) 108, (b) 10°?

. A family of salmon fish living off the Alaskan Coast obeys the Malthusian law

of population growth dp(#)/dt=0.003p(r), where ¢ is measured in minutes. At
time =0 a group of sharks establishes residence in these waters and begins
attacking the salmon. The rate at which salmon are killed by the sharks is
0.001p%(#), where p(¢) is the population of salmon at time z. Moreover, since an
undesirable element has moved into their neighborhood, 0.002 salmon per
minute leave the Alaskan waters.

(a) Modify the Malthusian law of population growth to take these two factors

into account.
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1 First-order differential equations

(b) Assume that at time =0 there are one million salmon. Find the population
p(?). What happens as t—00?

(c) Show that the above model is really absurd. Hint: Show, according to this
model, that the salmon population decreases from one million to about one
thousand in one minute.

8. The population of New York City would satisfy the logistic law

d_1, 1
da 25 (25)106 7’

where ¢ is measured in years, if we neglected the high emigration and homicide

rates.

(a) Modify this equation to take into account the fact that 9,000 people per year
move from the city, and 1,000 people per year are murdered.

(b) Assume that the population of New York City was 8,000,000 in 1970. Find
the population for all future time. What happens as t—o0?

9. An initial population of 50,000 inhabits a microcosm with a carrying capacity of
100,000. After five years, the population has increased to 60,000. Show that the
natural growth rate a for this population is (1,/5)In3/2.

10. We can model a population which becomes susceptible to epidemics in the

following manner. Assume that our population is originally governed by the lo-
gistic law

dp _ 2 .
T =wbp ®

and that an epidemic strikes as soon as p reaches a certain value Q, with Q less
than the limiting population a/b. At this stage the vital coefficients become
A < a, B< b, and Equation (i) is replaced by

dap _ 2 ..
Z =Ap — Bp“. (i1)

Suppose that Q > A/ B. The population then starts decreasing. A point is
reached when the population falls below a certain value g >4/ B. At this mo-
ment the epidemic ceases and the population again begins to grow following
Equation (i), until the incidence of a fresh epidemic. In this way there are peri-
odic fluctuations of p between g and Q. We now indicate how to calculate the
period T of these fluctuations.
(a) Show that the time 7 taken by the first part of the cycle, when p increases
from q to Q is given by
a—b
Tl = lan_(__i) .
a q(a-bQ)
(b) Show that the time T, taken by the second part of the cycle, when p de-
creases from Q to g is given by
1, 9(QB—A4)

=amo@E—A)

Thus, the time for the entire cycle is T, + T,.

T,
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11.

12.

1.6 The spread of technological innovations

It has been observed that plagues appear in mice populations whenever the
population becomes too large. Further, a local increase of density attracts preda-
tors in large numbcrs. These two factors will succeed in destroying 97-98% of a
population of small rodents in two or three weeks, and the density then falls to a
level at which the disease cannot spread. The population, reduced to 2% of its
maximum, finds its refuges from the predators sufficient, and its food abundant.
The population therefore begins to grow again until it reaches a level favorable
to another wave of disease and predation. Now, the speed of reproduction in
mice is so great that we may set 5=0 in Equation (i) of Exercise 7. In the second
part of the cycle, on the contrary, A is very small in comparison with B, and it
may be neglected therefore in Equaticn (ii).
(a) Under these assumptions, show that
T,= %ln% and T,= _Qq?iq
(b) Assuming that 7, is approximately four years, and Q/q is approximately
fifty, show that a is approximately one. This value of a, incidentally, corre-
sponds very well with the rate of multiplication of mice in natural circums-
tances.

There are many important classes of organisms whose birth rate is not propor-
tional to the population size. Suppose, for example, that each member of the
population requires a partner for reproduction, and that each member relies on
chance encounters for meeting a mate. If the expected number of encounters is
proportional to the product of the numbers of males and females, and if these
are equally distributed in the population, then the number of encounters, and
hence the birthrate too, is proportional to p2. The death rate is still proportional
to p. Consequently, the population size p(¢) satisfies the differential equation
% =bp®—ap, a,b>0.

Show that p(¢) approaches 0 as t—o0 if py< a/b. Thus, once the population size
drops below the critical size a/b, the population tends to extinction. Thus, a
species is classified endangered if its current size is perilously close to its critical
size.

1.6 The spread of technological innovations

Economists and sociologists have long been concerned with how a techno-
logical change, or innovation, spreads in an industry. Once an innovation
is introduced by one firm, how soon do others in the industry come to
adopt it, and what factors determine how rapidly they follow? In this sec-
tion we construct a model of the spread of innovations among farmers,
and then show that this same model also describes the spread of innova-
tions in such diverse industries as bituminous coal, iron and steel, brewing,
and railroads.

Assume that a new innovation is introduced into a fixed community of

N farmers at time #=0. Let p(¢) denote the number of farmers who have
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1 First-order differential equations

adopted at time ¢. As in the previous section, we make the approximation
that p(¢) is a continuous function of time, even though it obviously changes
by integer amounts. The simplest realistic assumption that we can make
concerning the spread of this innovation is that a farmer adopts the in-
novation only after he has been told of it by a farmer who has already
adopted. Then, the number of farmers Ap who adopt the innovation in a
small time interval At is directly proportional to the number of farmers p
who have already adopted, and the number of farmers N —p who are as
yet unaware. Hence, Ap = cp(N — p)At or Ap /At = cp(N — p) for some posi-
tive constant c. Letting Az—0, we obtain the differential equation

4
T =o(N-p). ()

This is the logistic equation of the previous section if we set a=cN, b=c.
Assuming that p(0)=1; i.e., one farmer has adopted the innovation at time
t=0, we see that p(¢) satisfies the initial-value problem

P epv-p.  pO=1. @

The solution of (2) is

NecNt
= —————
p1) N—1+eM

©)

which is a logistic function (see Section 1.5). Hence, our model predicts
that the adoption process accelerates up to that point at which half the
community is aware of the innovation. After this point, the adoption pro-
cess begins to decelerate until it eventually reaches zero.

Let us compare the predictions of our model with data on the spread of
two innovations through American farming communities in the middle
1950’s. Figure 1 represents the cumulative number of farmers in Iowa
during 1944-1955 who adopted 2,4-D weed spray, and Figure 2 represents
the cumulative percentage of corn acreage in hybrid corn in three Ameri-
can states during the years 1934-1958. The circles in these figures are the
actual measurements, and the graphs were obtained by connecting these
measurements with straight lines. As can be seen, these curves have all the
properties of logistic curves, and on the whole, offer very good agreement
with our model. However, there are two discrepancies. First, the actual
point at which the adoption process ceases to accelerate is not always when
fifty per cent of the population has adopted the innovation. As can be seen
from Figure 2, the adoption process for hybrid corn began to decelerate in
Alabama only after nearly sixty per cent of the farmers had adopted the
innovation. Second, the agreement with our model is much better in the
later stages of the adoption process than in the earlier stages.

The source of the second discrepancy is our assumption that a farmer
only learns of an innovation through contact with another farmer. This is
not entirely true. Studies have shown that mass communication media such
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1 First-order differential equations

as radio, television, newspapers and farmers’ magazines play a large role in
the early stages of the adoption process. Therefore, we must add a term to
the differential equation (1) to take this into account. To compute this
term, we assume that the number of farmers Ap who learn of the innova-
tion through the mass communication media in a short period of time At is
proportional to the number of farmers who do not yet know; i.e.,

Ap=c'(N—p)At

for some positive constant ¢’. Letting At—0, we see that ¢'(N — p) farmers,
per unit time, learn of the innovation through the mass communication
media. Thus, if p(0)=0, then p(¢) satisfies the initial-value problem

% =cp(N-p)+c(N-p), p(0)=0. (4)

The solution of (4) is
NC/[ e(c’+cN)l _ 1]

cN+ ¢'ele+eN ) ’ (5)

and in Exercises 2 and 3 we indicate how to determine the shape of the
curve (5).

The corrected curve (5) now gives remarkably good agreement with Fig-
ures 1 and 2, for suitable choices of ¢ and ¢’. However, (see Exercise 3c) it
still doesn’t explain why the adoption of hybrid corn in Alabama only be-
gan to decelerate after sixty per cent of the farmers had adopted the in-
novation. This indicates, of course, that other factors, such as the time in-
terval that elapses between when a farmer first learns of an innovation and
when he actually adopts it, may play an important role in the adoption
process, and must be taken into account in any model.

We would now like to show that the differential equation

dp/dt=cp(N—p)

also governs the rate at which firms in such diverse industries as bi-
tuminous coal, iron and steel, brewing, and railroads adopted several
major innovations in the first part of this century. This is rather surprising,
since we would expect that the number of firms adopting an innovation in
one of these industries certainly depends on the profitability of the innova-
tion and the investment required to implement it, and we haven’t men-
tioned these factors in deriving Equation (1). However, as we shall see
shortly, these two factors are incorporated in the constant c.

Let n be the total number of firms in a particular industry who have
adopted an innovation at time ¢. It is clear that the number of firms Ap
who adopt the innovation in a short time interval Az is proportional to the
number of firms n —p who have not yet adopted; i.e., Ap=A(n—p)At. Let-
ting Az—0, we see that

p()=

ap
T =A(n-p).
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1.6 The spread of technological innovations

The proportionality factor A depends on the profitability  of installing this
innovation relative to that of alternative investments, the investment s re-
quired to install this innovation as a percentage of the total assets of the
firm, and the percentage of firms who have already adopted. Thus,

A=f(ms,p/n).

Expanding f in a Taylor series, and dropping terms of degree more than
two, gives

A=a, +azw+a3s+a4§ +asm*+ ags’ + a;ms

b4 )4 P\?
+ )+ aos( = =).
asw(n) a9s(n)+a,0(n)

In the late 1950’s, Edwin Mansfield of Carnegie Mellon University in-
vestigated the spread of twelve innovations in four major industries. From
his exhaustive studies, Mansfield concluded that a,,=0 and

a,+a,m+ass+ asmt + ags? + a;ms =0.

Thus, setting

k=a,+ agm+ aqys, (6)
we see that P

71,) =k % (n=p).
(This is the equation obtained previously for the spread of innovations
among farmers, if we set k/n=c.) We assume that the innovation is first
adopted by one firm in the year #,. Then, p(¢) satisfies the initial-value
problem y

= pn=p) pli)=1 ™)

and this implies that
n

1+(n—1)e k=10

Mansfield studied how rapidly the use of twelve innovations spread
from enterprise to enterprise in four major industries—bituminous coal,
iron and steel, brewing, and railroads. The innovations are the shuttle car,
trackless mobile loader, and continuous mining machine (in bituminous
coal); the by-product coke oven, continuous wide strip mill, and continu-
ous annealing line for tin plate (in iron and steel); the pallet-loading
machine, tin container, and high speed bottle filler (in brewing); and the
diesel locomotive, centralized traffic control, and car retarders (in rail-
roads). His results are described graphically in Figure 3. For all but the
by-product coke oven and tin container, the percentages given are for ev-
ery two years from the year of initial introduction. The length of the inter-
val for the by-product coke oven is about six years, and for the tin con-
tainer, it is six months. Notice how all these curves have the general ap-
pearance of a logistic curve.

p(t)=
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Figure 3. Growth in the percentage of major firms that introduced twelve in-
novations; bituminous coal, iron and steel, brewing, and railroad industries,
1890-1958; (a) By-product coke oven (CO), diesel locomotive (DL), tin container
(TC), and shuttle car (SC); (b) Car retarder (CR), trackless mobile loader (ML),
continuous mining machine (CM), and pallet-loading machine (PL); (c) Continu-
ous wide-strip mill (SM), centralized traffic control (CTC), continuous annealing
(CA), and highspeed bottle filler (BF).



1.6 The spread of technological innovations

Table 1.
Innovation n to a, ag aqg T s
Diesel locomotive 2511925 | —0.59 | 0.530 | —0.027 | 1.59 | 0.015
Centralized traffic

control 24 | 1926 | —0.59 | 0.530 | —0.027 | 1.48 | 0.024
Car retarders 2511924 | —0.59 | 0.530 | —0.027 | 1.25 | 0.785
Continuous wide

strip mill 12 | 1924 | —0.52 | 0.530 | —0.027 | 1.87 | 4.908
By-product coke

oven 12 | 1894 | —0.52 | 0.530 | —0.027 | 1.47 | 2.083
Continuous annealing | 9 | 1936 | —0.52 | 0.530 | —0.027 | 1.25 | 0.554
Shuttle car 1511937 | —0.57 | 0.530 | —0.027 | 1.74 | 0.013
Trackless mobile

loader 1511934 | —0.57 | 0.530 | —0.027 | 1.65 | 0.019
Continuous mining

machine 17 | 1947 | —0.57 | 0.530 | —0.027 | 2.00 | 0.301
Tin container 22 | 1935 | —0.29 | 0.530 | —0.027 | 5.07 | 0.267
High speed bottle

filler 16 | 1951 | —0.29 | 0.530 | —0.027 | 1.20 | 0.575
Pallet-loading

machine 19 | 1948 | —0.29 | 0.530 | —0.027 | 1.67 | 0.115

For a more detailed comparison of the predictions of our model (7) with
these observed results, we must evaluate the constants », k, and ¢, for each
of the twelve innovations. Table 1 gives the value of n, t,, a,, as, ay, 7, and
s for each of the twelve innovations; the constant k can then be computed
from Equation (6). As the answers to Exercises 5 and 6 will indicate, our
model (7) predicts with reasonable accuracy the rate of adoption of these
twelve innovations.

Reference

Mansfield, E., “Technical change and the rate of imitation,” Econometrica, Vol. 29,
No. 4, Oct. 1961.

EXERCISES
1. Solve the initial-value problem (2).

2. Let ¢=0 in (5). Show that p(r) increases monotonically from 0 to N, and has no
points of inflection.

3. Here is a heuristic argument to determine the behavior of the curve (5). If ¢/=0,
then we have a logistic curve, and if ¢=0, then we have the behavior described
in Exercise 2. Thus, if ¢ is large relative to ¢’, then we have a logistic curve, and
if ¢ is small relative to ¢’ then we have the behavior illustrated in Exercise 2.
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1 First-order differential equations

(a) Let p(z) satisfy (4). Show that

d’p
— =(N—=p)(cp+ ) (cN—-2cp—¢").
dt
(b) Show that p(¢) has a point of inflection, at which dp/dt achieves a maxi-
mum, if, and only if, ¢/ /¢ < N.
(¢) Assume that p(¢) has a point of inflection at r=r*. Show that p(t*) < N/2.

4, Solve the initial-value problem (7).

5. It seems reasonable to take the time span between the date when 20% of the
firms had introduced the innovation and the date when 80% of the firms had in-
troduced the innovation, as the rate of imitation.

(a) Show from our model that this time span is 4(In2)/ k.
(b) For each of the twelve innovations, compute this time span from the data in
Table 1, and compare with the observed value in Figure 3.

6. (a) Show from our model that (1/k)In(n—1) years elapse before 50% of the
firms introduce an innovation.
(b) Compute this time span for each of the 12 innovations and compare with the
observed values in Figure 3.

1.7 An atomic waste disposal problem

For several years the Atomic Energy Commission (now known as the
Nuclear Regulatory Commission) had disposed of concentrated radioac-
tive waste material by placing it in tightly sealed drums which were then
dumped at sea in fifty fathoms (300 feet) of water. When concerned ecolo-
gists and scientists questioned this practice, they were assured by the
A.E.C. that the drums would never develop leaks. Exhaustive tests on the
drums proved the A.E.C. right. However, several engineers then raised the
question of whether the drums could crack from the impact of hitting the
ocean floor. “Never,” said the A.E.C. “We’ll see about that,” said the en-
gineers. After performing numerous experiments, the engineers found that
the drums could crack on impact if their velocity exceeded forty feet per
second. The problem before us, therefore, is to compute the velocity of the
drums upon impact with the ocean floor. To this end, we digress briefly to
study elementary Newtonian mechanics.

Newtonian mechanics is the study of Newton’s famous laws of motion
and their consequences. Newton’s first law of motion states that an object
will remain at rest, or move with constant velocity, if no force is acting on
it. A force should be thought of as a push or pull. This push or pull can be
exerted directly by something in contact with the object, or it can be ex-
erted indirectly, as the earth’s pull of gravity is.

Newton’s second law of motion is concerned with describing the motion
of an object which is acted upon by several forces. Let y(¢) denote the
position of the center of gravity of the object. (We assume that the object
moves in only one direction.) Those forces acting on the object, which tend
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1.7 An atomic waste disposal problem

to increase y, are considered positive, while those forces tending to de-
crease y are considered negative. The resultant force F acting on an object
is defined to be the sum of all positive forces minus the sum of all negative
forces. Newton’s second law of motion states that the acceleration d2y /dr?
of an object is proportional to the resultant force F acting on it; i.e.,
2

r_1p (1)

it m
The constant m is the mass of the object. It is related to the weight W of
the object by the relation W=mg, where g is the acceleration of gravity.
Unless otherwise stated, we assume that the weight of an object and the ac-
celeration of gravity are constant. We will also adopt the English system of
units, so that ¢ is measured in seconds, y is measured in feet, and F is
measured in pounds. The units of m are then slugs, and the gravitational
acceleration g equals 32.2 ft/s%

Remark. We would prefer to use the mks system of units, where y is
measured in meters and F is measured in newtons. The units of m are then
kilograms, and the gravitational acceleration equals 9.8 m/s2. In the third
edition of this text, we have changed from the English system of units to the
mks system in Section 2.6. However, changing to the mks system in this
section would have caused undue confusion to the users of the first and
second editions. This is because of the truncation error involved in convert-
ing from feet to meters and pounds to newtons.

We return now to our atomic waste disposal problem. As a drum de-
scends through the water, it is acted upon by three forces W, B, and D.
The force W is the weight of the drum pulling it down, and in magnitude,
W =1527.436 1b. The force B is the buoyancy force of the water acting on
the drum. This force pushes the drum up, and its magnitude is the weight
of the water displaced by the drum. Now, the Atomic Energy Commission
used 55 gallon drums, whose volume is 7.35 ft*>. The weight of one cubic
foot of salt water is 63.99 1b. Hence B =(63.99)(7.35)=470.327 lb.

The force D is the drag force of the water acting on the drum; it resists
the motion of the drum through the water. Experiments have shown that
any medium such as water, oil, and air resists the motion of an object
through it. This resisting force acts in the direction opposite the motion,
and is usually directly proportional to the velocity ¥ of the object. Thus,
D=V, for some positive constant c. Notice that the drag force increases
as V increases, and decreases as V decreases. To calculate D, the engineers
conducted numerous towing experiments. They concluded that the orienta-
tion of the drum had little effect on the drag force, and that

(Ib)(s)

D=0.08V .
ft
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1 First-order differential equations

Now, set y =0 at sea level, and let the direction of increasing y be down-
wards. Then, W is a positive force, and B and D are negative forces. Con-
sequently, from (1),

d2
—————(W B—cV)=——(W B—cV).
dr?
We can rewrite this equation as a first-order linear differential equation for
V=dy/dl; ie,
av

z+——V —(W—B). (2)

Initially, when the drum is released in the ocean, its velocity is zero. Thus,
V (1), the velocity of the drum, satisfies the initial-value problem
dv
dr

and this implies that

+__V_———(W B),  V(0)=0, (3)

V()= W;B[l—e("g/”’)’]. 4)

Equation (4) expresses the velocity of the drum as a function of time.
In order to determine the impact velocity of the drum, we must compute
the time ¢ at which the drum hits the ocean floor. Unfortunately, though, it
is impossible to find ¢ as an explicit function of y (see Exercise 2). There-
fore, we cannot use Equation (4) to find the velocity of the drum when it
hits the ocean floor. However, the A.E.C. can use this equation to try and
prove that the drums do not crack on impact. To wit, observe from (4) that
V(¢) is a monotonic increasing function of time which approaches the
limiting value

W—-B

as ¢t approaches infinity. The quantity V. is called the terminal velocity of
the drum. Clearly, V' (¢) < V7, so that the velocity of the drum when it hits
the ocean floor is certainly less than (W — B)/c. Now, if this terminal
velocity is less than 40 ft/s, then the drums could not possibly break on
impact. However,

W—B _ 527.436—470.327
¢ 0.08

and this is way too large.

It should be clear now that the only way we can resolve the dispute be-
tween the A.E.C. and the engineers is to find v(y), the velocity of the drum
as a function of position. The function v(y) is very different from the func-
tion V' (¢), which is the velocity of the drum as a function of time. How-
ever, these two functions are related through the equation

V(ny=o(r(1)

=713.86 ft/s,
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1.7 An atomic waste disposal problem

if we express y as a function of ¢. By the chain rule of differentiation,
dV /dt=(dv/dy)(dy /dr). Hence
Wdo &
g dy dt
But dy /dt =V (£)=v(y(¢)). Thus, suppressing the dependence of y on ¢, we
see that o(y) satisfies the first-order differential equation

=W-B-—cV.

W dv v dv g
? E—W B—CD, or m‘@-w
Moreover,
v(0)=0v(y(0))=¥(0)=0.
Hence,
f __rdr _ —d _ 8y
W—B—cr o W W
Now,
' rdr _ ‘r=(W-B)/c W-B (° dr
L W—B-c ) W-B—c T L W—B—cr

1 (v W—-B (° dr
=—= +
c.f(;dr c fo W~—B—cr
0 (W—B)l |W— B—co
c 2 " w-B

We know already that v <(W — B)/c. Consequently, W — B — cv is always
positive, and
51__2_(W—B“ W-B—cv 5)
W ¢ c? "“w-B -

At this point, we are ready to scream in despair since we cannot find v
as an explicit function of y from (5). This is not an insurmountable diffi-
culty, though. As we show in Section 1.11, it is quite simple, with the aid of
a digital computer, to find ©(300) from (5). We need only supply the com-
puter with a good approximation of v(300) and this is obtained in the
following manner. The velocity v(y) of the drum satisfies the initial-value
problem

W dv
—v—=W-B—cv, v(0)=0. 6
o (0) (6)
Let us, for the moment, set ¢ =0 in (6) to obtain the new initial-value prob-

lem
W  du

—u—=W-—B, u(0)=0. 6
g © ©)
(We have replaced v by u to avoid confusion later.) We can integrate (6")
immediately to obtain that
W ou? _ _[28 12
S =(W=B)y, o u(y)—[ S B)y] .
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1 First-order differential equations

In particular,

2(32.2)(57.109)(300) 1'/2
527.436

2 1/2
u(300)=[W(W—B)300] =[
=V/2092 =45.7 ft/s.

We claim, now, that #(300) is a very good approximation of v(300). The
proof of this is as follows. First, observe that the velocity of the drum is
always greater if there is no drag force opposing the motion. Hence,

v(300) < u(300).

Second, the velocity v increases as y increases, so that v(y) < v(300) for y <
300. Consequently, the drag force D of the water acting on the drum is al-
ways less than 0.08 X #(300)=3.7 1b. Now, the resultant force W — B pull-
ing the drum down is approximately 57.1 Ib, which is very large compared
to D. It stands to reason, therefore, that u(y) should be a very good ap-
proximation of v(y). And indeed, this is the case, since we find numeri-
cally (see Section 1.11) that v(300)=45.1 ft/s. Thus, the drums can break
upon impact, and the engineers were right.

Epilog. The rules of the Atomic Energy Commission now expressly for-
bid the dumping of low level atomic waste at sea. This author is uncertain
though, as to whether Western Europe has also forbidden this practice.

Remark. The methods introduced in this section can also be used to find
the velocity of any object which is moving through a medium that resists
the motion. We just disregard the buoyancy force if the medium is not
water. For example, let V' (f) denote the velocity of a parachutist falling to
earth under the influence of gravity. Then,

g dt

where W is the weight of the man and the parachute, and D is the drag
force exerted by the atmosphere on the falling parachutist. The drag force
on a bluff object in air, or in any fluid of small viscosity is usually very
nearly proportional to V2 Proportionality to V is the exceptional case, and
occurs only at very low speeds. The criterion as to whether the square or
the linear law applies is the “Reynolds number”

R=pVL/p.

L is a representative length dimension of the object, and p and y are the
density and viscosity of the fluid. If R< 10, then D~V, and if R > 10°,
D~V?2 For 10< R < 10% neither law is accurate.
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1.7 An atomic waste disposal problem

EXERCISES

1
2

10

11.

Solve the initial-value problem (3).

Solve for y =y (¢) from (4), and then show that the equation y = y(f) cannot be
solved explicitly for t=1(y).

. Show that the drums of atomic waste will not crack upon impact if they are

dropped into L feet of water with 2g(W — B)L/ W)/ < 40.

. Fat Richie, an enormous underworld hoodlum weighing 400 lb, was pushed out

of a penthouse window 2800 feet above the ground in New York City. Neglect-
ing air resistance find (a) the velocity with which Fat Richie hit the ground; (b)
the time elapsed before Fat Richie hit the ground.

. An object weighing 300 1b is dropped into a river 150 feet deep. The volume of

the object is 2 ft?, and the drag force exerted by the water on it is 0.05 times its
velocity. The drag force may be considered negligible if it does not exceed 5%
of the resultant force pulling the drum down. Prove that the drag force is negli-
gible in this case. (Here B=2(62.4)=124.8.)

. A 400 Ib sphere of volume 47 /3 and a 300 1b cylinder of volume = are simulta-

neously released from rest into a river. The drag force exerted by the water on
the falling sphere and cylinder is AV, and AV, respectively, where ¥, and V,
are the velocities of the sphere and cylinder, and A is a positive constant. De-
termine which object reaches the bottom of the river first.

A parachutist falls from rest toward earth. The combined weight of man and
parachute is 161 1b. Before the parachute opens, the air resistance equals V' /2.
The parachute opens 5 seconds after the fall begins; and the air resistance is
then ¥2/2. Find the velocity ¥ (¢) of the parachutist after the parachute opens.

. A man wearing a parachute jumps from a great height. The combined weight

of man and parachute is 161 lb. Let ¥'(¢) denote his speed at time ¢ seconds
after the fall begins. During the first 10 seconds, the air resistance is V/2.
Thereafter, while the parachute is open, the air resistance is 10V. Find an ex-
plicit formula for V' (¢) at any time ¢ greater than 10 seconds.

. An object of mass m is projected vertically downward with initial velocity ¥} in

a medium offering resistance proportional to the square root of the magnitude
of the velocity.
(2) Find a relation between the velocity ¥ and the time 7 if the drag force

equals cVV .
(b) Find the terminal velocity of the object. Hint: You can find the terminal
velocity even though you cannot solve for V ().

A body of mass m falls from rest in a medium offering resistance proportional
to the square of the velocity; that is, D=c¥V?2 Find V(f) and compute the
terminal velocity V.

A body of mass m is projected upward from the earth’s surface with an initial
velocity V,. Take the y-axis to be positive upward, with the origin on the
surface of the earth. Assuming there is no air resistance, but taking into
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1 First-order differential equations

account the variation of the earth’s gravitational field with altitude, we obtain
that
dv mgR?
m& =T
(y+R)
where R is the radius of the earth.
(@) Let V(H)=v(y(1)). Find a differential equation satisfied by v(y).
(b) Find the smallest initial velocity ¥ for which the body will not return to
earth. This is the so-called escape velocity. Hint: The escape velocity is
found by requiring that v(y) remain strictly positive.

12, It is not really necessary to find v(y) explicitly in order to prove that v(300)
exceeds 40 ft/s. Here is an alternate proof. Observe first that v(y) increases as
y increases. This implies that y is a monotonic increasing function of v. There-
fore, if y is less than 300 ft when o is 40 ft/s, then v must be greater than 40
ft/s when y is 300 ft. Substitute v =40 ft/s in Equation (5), and show that y is
less than 300 ft. Conclude, therefore, that the drums can break upon impact.

1.8 The dynamics of tumor growth, mixing problems
and orthogonal trajectories

In this section we present three very simple but extremely useful applica-
tions of first-order equations. The first application concerns the growth of
solid tumors; the second application is concerned with “mixing problems”
or “compartment analysis”; and the third application shows how to find a
family of curves which is orthogonal to a given family of curves.

(a) The dynamics of tumor growth

It has been observed experimentally, that “free living™ dividing cells, such
as bacteria cells, grow at a rate proportional to the volume of dividing cells
at that moment. Let V' (¢) denote the volume of dividing cells at time ¢.
Then,

dv _
” =\V (1
for some positive constant A. The solution of (1) is
V(1)=Vyert= )

where V}, is the volume of dividing cells at the initial time ¢,. Thus, free
living dividing cells grow exponentially with time. One important con-
sequence of (2) is that the volume of cells keeps doubling (see Exercise 1)
every time interval of length In2/A.

On the other hand, solid tumors do not grow exponentially with time.
As the tumor becomes larger, the doubling time of the total tumor volume
continuously increases. Various researchers have shown that the data for
many solid tumors is fitted remarkably well, over almost a 1000 fold in-
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1.8 The dynamics of tumor growth, mixing problems, and orthogonal trajectories

crease in tumor volume, by the equation

V(r)= Voexp(%(l —exp(- at))) 3)

where exp(x)=e”*, and A and a are positive constants.

Equation (3) is usually referred to as a Gompertzian relation. It says
that the tumor grows more and more slowly with the passage of time, and
that it ultimately approaches the limiting volume Vye*/®. Medical re-
searchers have long been concerned with explaining this deviation from
simple exponential growth. A great deal of insight into this problem can be
gained by finding a differential equation satisfied by V' (¢). Differentiating
(3) gives

% = Vyhexp(—ar) exp(%(l —exp(— 0‘(’))))

=Ae V. (4)

Two conflicting theories have been advanced for the dynamics of tumor
growth. They correspond to the two arrangements

L —re=yv (4a)
L Ne=v) (4b)

of the differential equation (4). According to the first theory, the retarding
effect of tumor growth is due to an increase in the mean generation time of
the cells, without a change in the proportion of reproducing cells. As time
goes on, the reproducing cells mature, or age, and thus divide more slowly.
This theory corresponds to the bracketing (a).

The bracketing (b) suggests that the mean generation time of the divid-
ing cells remains constant, and the retardation of growth is due to a loss in
reproductive cells in the tumor. One possible explanation for this is that a
necrotic region develops in the center of the tumor. This necrosis appears at
a critical size for a particular type of tumor, and thereafter the necrotic
“core” increases rapidly as the total tumor mass increases. According to
this theory, a necrotic core develops because in many tumors the supply of
blood, and thus of oxygen and nutrients, is almost completely confined to
the surface of the tumor and a short distance beneath it. As the tumor
grows, the supply of oxygen to the central core by diffusion becomes more
and more difficult resulting in the formation of a necrotic core.

(b) Mixing problems

Many important problems in biology and engineering can be put into the
following framework. A solution containing a fixed concentration of sub-
stance x flows into a tank, or compartment, containing the substance x
and possibly other substances, at a specified rate. The mixture is stirred
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1 First-order differential equations

together very rapidly, and then leaves the tank, again at a specified rate.
Find the concentration of substance x in the tank at any time ¢.

Problems of this type fall under the general heading of “mixing prob-
lems,” or compartment analysis. The following example illustrates how to
solve these problems.

Example 1. A tank contains S, 1b of salt dissolved in 200 gallons of water.
Starting at time r=0, water containing ; Ib of salt per gallon enters the
tank at the rate of 4 gal/min, and the well stirred solution leaves the tank
at the same rate. Find the concentration of salt in the tank at any time 7>
0.

Solution. Let S (¢) denote the amount of salt in the tank at time . Then,
S’(#), which is the rate of change of salt in the tank at time ¢, must equal
the rate at which salt enters the tank minus the rate at which it leaves the
tank. Obviously, the rate at which salt enters the tank is

2 Ib/gal times 4 gal /min=2 1b/min.

After a moment’s reflection, it is also obvious that the rate at which salt
leaves the tank is

: S(1)
4 gal /min times 500
Thus
S’(t)=2—& S(0)=S5,
50 ° o
and this implies that
S ()= Spe ™% +100(1 — e ~*9%). (5
Hence, the concentration ¢(¢) of salt in the tank is given by
c(t)=S7(()%)=—2%%e‘°'°2’+%(1—e‘°'°2’). (6)

Remark. The first term on the right-hand side of (5) represents the por-
tion of the original amount of salt remaining in the tank at time ¢. This
term becomes smaller and smaller with the passage of time as the original
solution is drained from the tank. The second term on the right-hand side
of (5) represents the amount of salt in the tank at time ¢ due to the action
of the flow process. Clearly, the amount of salt in the tank must ultimately
approach the limiting value of 100 Ib, and this is easily verified by letting ¢
approach o in (5).

(c) Orthogonal trajectories

In many physical applications, it is often necessary to find the orthogonal
trajectories of a given family of curves. (A curve which intersects each
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1.8 The dynamics of tumor growth, mixing problems, and orthogonal trajectories

member of a family of curves at right angles is called an orthogonal trajec-
tory of the given family.) For example, a charged particle moving under
the influence of a magnetic field always travels on a curve which is per-
pendicular to each of the magnetic field lines. The problem of computing
orthogonal trajectories of a family of curves can be solved in the following
manner. Let the given family of curves be described by the relation

F(x,y,¢)=0. (7)
Differentiating this equation yields
’ ’ FX
F,+Fy =0, or y=-z- ®)

y

Next, we solve for ¢ =c(x,y) from (7) and replace every ¢ in (8) by this
value ¢(x,y). Finally, since the slopes of curves which intersect orthogo-
nally are negative reciprocals of each other, we see that the orthogonal
trajectories of (7) are the solution curves of the equation

_E
Y=g )

Example 2. Find the orthogonal trajectories of the family of parabolas
x=cy?

Solution. Differentiating the equation x = cy? gives 1=2cyy’. Since c =
x/y?, we see that y'=y /2x. Thus, the orthogonal trajectories of the family

y

— X

Figure 1. The parabolas x = cy? and their orthogonal trajectories
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1 First-order differential equations

of parabolas x = cy? are the solution curves of the equation

2x
==, 10
y 5 (10)
This equation is separable, and its solution is
yi+2x2=k2 (11)

Thus, the family of ellipses (11) (see Figure 1) are the orthogonal trajecto-
ries of the family of parabolas x = cy2.

Reference

Burton, Alan C., Rate of growth of solid tumors as a problem of diffusion, Growth,
1966, vol. 30, pp. 157-176.

EXERCISES

1. A given substance satisfies the exponential growth law (1). Show that the graph
of In¥V versus ¢ is a straight line.

2. A substance x multiplies exponentially, and a given quantity of the substance
doubles every 20 years. If we have 3 Ib of substance x at the present time, how
many Ib will we have 7 years from now?

3. A substance x decays exponentially, and only half of the given quantity of x
remains after 2 years. How long does it take for 5 1b of x to decay to 1 1b?

4. The equation p’=ap*®, a > 1, is proposed as a model of the population growth
of a certain species. Show that p(f)—co in finite time. Conclude, therefore, that
this model is not accurate over a reasonable length of time.

5. A cancerous tumor satisfies the Gompertzian relation (3). Originally, when it
contained 10* cells, the tumor was increasing at the rate of 20% per unit time.
The numerical value of the retarding constant a is 0.02. What is the limiting
number of cells in this tumor?

6. A tracer dose of radioactive iodine 13'I is injected into the blood stream at time
t=0. Assume that the original amount Q, of iodine is distributed evenly in the
entire blood stream before any loss occurs. Let Q(¢) denote the amount of
iodine in the blood at time ¢ > 0. Part of the iodine leaves the blood and enters
the urine at the rate k; Q. Another part of the iodine enters the thyroid gland at
the rate k,Q. Find Q ().

7. Industrial waste is pumped into a tank containing 1000 gallons of water at the
rate of 1 gal/min, and the well-stirred mixture leaves the tank at the same rate.
(a) Find the concentration of waste in the tank at time ¢. (b) How long does it
take for the concentration to reach 20%?

8. A tank contains 300 gallons of water and 100 gallons of pollutants. Fresh water
is pumped into the tank at the rate of 2 gal /min, and the well-stirred mixture
leaves at the same rate. How long does it take for the concentration of pollu-
tants in the tank to decrease to 1/10 of its original value?
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11.

1.8 The dynamics of tumor growth, mixing problems, and orthogonal trajectories

. Consider a tank containing, at time ¢=0, Q, 1b of salt dissolved in 150 gallons

of water. Assume that water containing 1 b of salt per gallon is entering the
tank at a rate of 3 gal/min, and that the well-stirred solution is leaving the tank
at the same rate. Find an expression for the concentration of salt in the tank at
time .

A room containing 1000 cubic feet of air is originally free of carbon monoxide.
Beginning at time ¢ =0, cigarette smoke containing 4 percent carbon monoxide
is blown into the room at the rate of 0.1 ft*/min, and the well-circulated mix-
ture leaves the room at the same rate. Find the time when the concentration of
carbon monoxide in the room reaches 0.012 percent. (Extended exposure to
this concentration of carbon monoxide is dangerous.)

A 500 gallon tank originally contains 100 gallons of fresh water. Beginning at
time 7 =0, water containing 50 percent pollutants flows into the tank at the rate
of 2 gal/min, and the well-stirred mixture leaves at the rate of 1 gal/min. Find
the concentration of pollutants in the tank at the moment it overflows.

In Exercises 12-17, find the orthogonal trajectories of the given family of

curves.

12, y=cx? 13. y2—x%=c

14, y=csinx 15. x>+y%=cx (see Exercise 13 of Sec-
tion 1.4)

16. y=ce* 17. y=e*

18. The presence of toxins in a certain medium destroys a strain of bacteria at a

19.

rate jointly proportional to the number of bacteria present and to the amount
of toxin. Call the constant of proportionality a. If there were no toxins present,
the bacteria would grow at a rate proportional to the amount present. Call this
constant of proportionality b. Assume that the amount T of toxin is increasing
at a constant rate c, that is, d7/dr=c, and that the production of toxins begins
at time r=0. Let y(¢) denote the number of living bacteria present at time ¢.
(a) Find a first-order differential equation satisfied by y (¢).

(b) Solve this differential equation to obtain y(#). What happens to y(¢) as ¢ ap-

proaches oo0?

Many savings banks now advertise continuous compounding of interest. This

means that the amount of money P (¢) on deposit at time ¢, satisfies the dif-

ferential equation dP(7)/dt=rP(t) where r is the annual interest rate and ¢ is

measured in years. Let P, denote the original principal.

(a) Show that P(1)= Pye’”.

(b) Let r=0.0575, 0.065, 0.0675, and 0.075. Show that e”=1.05919, 1.06716,
1.06983, and 1.07788, respectively. Thus, the effective annual yield on inter-
est rates of 53, 61, 62, and 71% should be 5.919, 6.716, 6.983, and 7.788%,
respectively. Most banks, however, advertise effective annual yields of 6,
6.81, 7.08, and 7.9%, respectively. The reason for this discrepancy is that
banks calculate a daily rate of interest based on 360 days, and they pay in-
terest for each day money is on deposit. For a year, one gets five extra
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1 First-order differential equations

days. Thus, we must multiply the annual yields of 5.919, 6.716, 6.983, and
7.788% by 365/360, and then we obtain the advertised values.

(c) It is interesting to note that the Old Colony Cooperative Bank in Rhode Is-
land advertises an effective annual yield of 6.72% on an annual interest rate
of 61% (the lower value), and an effective annual yield of 7.9% on an ann-
ual interest rate of 73%. Thus they are inconsistent.

1.9 Exact equations, and why we cannot solve

very many differential equations
When we began our study of differential equations, the only equation we
could solve was dy/dt=g(r). We then enlarged our inventory to include

all linear and separable equations. More generally, we can solve all dif-
ferential equations which are, or can be put, in the form

2 6(1,9)=0 ()

for some function ¢(¢,y). To wit, we can integrate both sides of (1) to ob-

tain that
¢(t,y) =constant 2)

and then solve for y as a function of ¢ from (2).

Example 1. The equation 1+ cos(¢+y)+cos(+y)dy/dr)=0 can be writ-
ten in the form (d/dt)[t +sin(z + y)]=0. Hence,

o(t,y)=t+sin(t+y)=c, and y=—r+arcsin(c—1).

Example 2. The equation cos(¢+y)+[1+cos(z+y)]dy /dt =0 can be writ-
ten in the form (d/dr)[y +sin(z + y)]=0. Hence,

o(t,y)=y+sin(t+y)=c.

We must leave the solution in this form though, since we cannot solve for y
explicitly as a function of time.

Equation (1) is clearly the most general first-order differential equation
that we can solve. Thus, it is important for us to be able to recognize when
a differential equation can be put in this form. This is not as simple as one
might expect. For example, it is certainly not obvious that the differential
equation

2t+y—sint+(3y2+cosy+t)%=O

can be written in the form (d/df)(y3+ 1>+ ty +siny + cos£)=0. To find all
those differential equations which can be written in the form (1), observe,
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1.9 Exact equations, and why we cannot solve very many differential equations

from the chain rule of partial differentiation, that

dt¢(t y(1)= —+$?17'

Hence, the differential equation M (z,y)+ N (¢,y)(dy /dt)=0 can be written
in the form (d/df)¢(t,y)=0 if and only if there exists a function ¢(z,y)
such that M (z,y)=0¢/3t and N (t,y)=103¢/dy.

This now leads us to the following question. Given two functions
M (t,y) and N (¢,y), does there exist a function ¢(z,y) such that M (z,y)
=0¢/0t and N(1,y)=0¢/dy? Unfortunately, the answer to this question
is almost always no as the following theorem shows.

Theorem 1. Let M (t,y) and N (t,y) be continuous and have continuous par-
tial derivatives with respect to t and y in the rectangle R consisting of those
points (t,y) with a<t<b and ¢ <y<d. There exists a function ¢(t,y)
such that M (t,y)=09¢/0t and N (t,y)=23¢/dy if, and only if,

oM /dy=0N /ot
in R.
ProOF. Observe that M (¢,y)= d¢ /3¢ for some function ¢(¢,y) if, and only
if,
#(1y)= [ M(t.y)dt+h(y) (3)

where 4(y) is an arbitrary function of y. Taking partial derivatives of both
sides of (3) with respect to y, we obtain that

a¢ oM ( ,_Y)

> 3y AR ()

Hence, 9¢/dy will be equal to N (1,) if, and only if,

oM (1,
N(t,y)=f—$dt+h'(y)

or

HOY=N () - [ 0 g (@

Now A’(y) is a function of y alone, while the nght-hand side of (4) appears
to be a function of both 7 and y. But a function of y alone cannot be equal
to a function of both ¢ and y. Thus Equation (4) makes sense only if the
right-hand side is a function of y alone, and this is the case if, and only if,

(t,y) IN M
at[N(’) f }_———=o.
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1 First-order differential equations

Hence, if 9N /0t 93M /9dy, then there is no function ¢(z,y) such that M
=0¢/0t, N=0¢/dy. On the other hand, if IN/dr=0M /9y then we can
solve for

oM (¢,
h0)= [ [N [l

Consequently, M =0¢/9¢t, and N=09¢/dy with

oM (t,
#(ty)= [M(Lyydi+ [| N (Ly)~ [—5 (y) }dy. o ©
Definition. The differential equation
MEN+N()D =0 ©)

is said to be exact if M /dy =9dN /ot

The reason for this definition, of course, is that the left-hand side of (6)
is the exact derivative of a known function of ¢ and y if 9M /9y =9N /ot

Remark 1. It is not essential, in the statement of Theorem 1, that 9M /dy
=3dN /0t in a rectangle. It is sufficient if 9M /dy =9dN /3¢ in any region R
which contains no “holes”. That is to say, if C is any closed curve lying en-
tirely in R, then its interior also lies entirely in R.

Remark 2. The differential equation dy/dt=f(¢,y) can always be written
in the form M (t,y)+ N (t,y)(dy/df)=0 by setting M (t,y)= —f(t,y) and
N(t,y)=1.

Remark 3. It is customary to say that the solution of an exact differential
equation is given by ¢(¢,y)=constant. What we really mean is that the
equation ¢(#,y)=c is to be solved for y as a function of ¢ and ¢. Unfor-
tunately, most exact differential equations cannot be solved explicitly for y
as a function of . While this may appear to be very disappointing, we wish
to point out that it is quite simple, with the aid of a computer, to compute
y(¢) to any desired accuracy (see Section 1.11).

In practice, we do not recommend memorizing Equation (5). Rather, we
will follow one of three different methods to obtain ¢(z,y).
First Method: The equation M (t,y)= d¢/dt determines ¢(¢,y) up to an ar-
bitrary function of y alone, that is,

8(ty)= [ M (1.y)di+h(»).
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1.9 Exact equations, and why we cannot solve very many differential equations

The function 4(y) is then determined from the equation

#0)=N (o) - [

Second Method: If N (1,y)=9¢/0dy, then, of necessity,

#(ty)= [N (ty)dy + k(1)

where k(?) is an arbitrary function of ¢ alone. Since

3o N ( Y)
M(txy)___ dy + k(t)
we see that k(¢) is determined from the equatlon
(t,y)

K(O)=M (1)~ [

Note that the right-hand side of this equation (see Exercise 2) is a function
of ¢ alone if 9M /9y =09N/ot.

Third Method: The equations d¢/9t= M (t,y) and d¢/dy = N (t,y) imply
that

#(ty)= [M(ty)di+h(y) and &(ty)= [N(Ly)dy+K(1).

Usually, we can determine A(y) and k(¢) just by inspection.
Example 3. Find the general solution of the differential equation

3y+e' +(3t+cosy)——0

Solution. Here M (t,y)=3y+ e’ and N (t,y)=3t+cosy. This equation is
exact since 9M /dy =3 and ON /0t = 3. Hence, there exists a function ¢(¢,y)
such that

. 0% ¢
t= — 1 [ Jpe——
(i) 3y+e 5 and (i) 3¢+cosy 3
We will find ¢(z,y) by each of the three methods outlined above.

First Method: From (i), ¢(t,y)=e’+ 3ty + h(y). Differentiating this equa-
tion with respect to y and using (ii) we obtain that

h'(y)+3t=3t+cosy.

Thus, hA(y)=siny and ¢(t,y)=e’ + 3ty +siny. (Strictly speaking, h(y)=
siny + constant. However, we already incorporate this constant of integra-
tion into the solution when we write ¢(z,y) = ¢.) The general solution of the
differential equation must be left in the form e’+ 31y +siny = ¢ since we
cannot find y explicitly as a function of ¢ from this equation.

Second Method: From (ii), ¢(¢,y) =3ty +siny + k(¢). Differentiating this
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1 First-order differential equations

expression with respect to ¢, and using (i) we obtain that
Jy+k'(1)=3y+e’.
Thus, k(f)=e’ and ¢(t,y) =3ty +siny + e’.
Third Method: From (i) and (ii)
o(t,y)=e'+3ty+h(y) and ¢(t,y)=3ty+siny+k(s).

Comparing these two expressions for the same function ¢(¢,y) it is obvious
that A(y)=siny and k(¢)=e'. Hence

o(t,y)=e’+31y +siny.

Example 4. Find the solution of the initial-value problem
dy
dt

Solution. Here M (t,y)=3t%y +8ty* and N(t,y)=t>+8¢%y + 12y% This
equation is exact since

32y +8p+ (2 +8:2y +12p%) = =0, y(2)=1.

M _;p ON _..
5, —30+16y and S =3r+16y.
Hence, there exists a function ¢(¢,y) such that
0 8

Again, we will find ¢(z,y) by each of three methods.

First Method: From (i), ¢(t,y) =t +4t*y2 + h(y). Differentiating this
equation with respect to y and using (ii) we obtain that

B+82% +h(y)=r+8% +12y%

Hence, h(y)=4y* and the general solution of the differential equation is
o(t,y)=1ty +413y?+4y3=c. Setting r=2 and y =1 in this equation, we see
that ¢=28. Thus, the solution of our initial-value problem is defined im-
plicitly by the equation £3 +4r2y?+4y3=28.

Second Method: From (ii), (t,y)= 3y +4r%y?+4y3+ k(¢). Differentiating
this expression with respect to ¢ and using (i) we obtain that

3ty + 82+ k'(1)=3r%y + 812
Thus k(£)=0 and ¢(z,y) =ty +42y2 +4y>,
Third Method: From (i) and (ii)
o(t,y)=1y +4ry*+ h(y) and o(t,y)=1y+4r2+4y> + k(1)

Comparing these two expressions for the same function ¢(z,y) we see that
h(y)=4y3 and k(f)=0. Hence, ¢(2,y)= 3y +4r3y2 + 4>,

In most instances, as Examples 3 and 4 illustrate, the third method is
the simplest to use. However, if it is much easier to integrate N with re-
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1.9 Exact equations, and why we cannot solve very many differential equations

spect to y than it is to integrate M with respect to ¢, we should use the sec-
ond method, and vice-versa.

Example 5. Find the solution of the initial-value problem
4t3e'+y+t4e’+y+2t+(t4e’+y+2y)%=0, yO)=1.
Solution. This equation is exact since

% (AP + ' +20)=(r*+413)e' 7 = %(l“e'” +2y).

Hence, there exists a function ¢(z,y) such that

0
(i) 4% + %'V + 2= a—f
and 3¢
31 4, t+y __
(i) te'*r+2y W

Since it is much simpler to integrate z%’*” + 2y with respect to y than it is
to integrate 4t%'*Y + t%e'*¥ +2¢ with respect to f, we use the second
method. From (ii), ¢(z,y)=1t%'*” +y%+ k(¢). Differentiating this expres-
sion with respect to 7 and using (i) we obtain
(t*+43)e' ™ + k'(1)=4%'"Y + tYe' ™V +21.
Thus, k(¢)=+¢* and the general solution of the differential equation is
o(t,y)=t'e’*”+y2+ t*=c. Setting =0 and y =1 in this equation yields ¢
=1. Thus, the solution of our initial-value problem is defined implicitly by
the equation t%’*” + 2+ y?=1.
Suppose now that we are given a differential equation
dy
M(t,y)+N(t,y)—at—=0 @)

which is not exact. Can we make it exact? More precisely, can we find a
function p(¢,p) such that the equivalent differential equation

BEDM (1) + (9N (1) S =0 ®

is exact? This question is simple, in principle, to answer. The condition that
(8) be exact is that

d 0
oy (BN M (1)) = 5 (p(62)N (7))
or
o . M _ %% N
TPy TN R ©)
(For simplicity of writing, we have suppressed the dependence of u, M and
N on ¢t and y in (9).) Thus, Equation (8) is exact if and only if u(z,y) satis-
fies Equation (9).
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1 First-order differential equations

Definition. A function p(7,y) satisfying Equation (9) is called an integrat-
ing factor for the differential equation (7).

The reason for this definition, of course, is that if y satisfies (9) then we
can write (8) in the form (d/df)¢(t,y)=0 and this equation can be in-
tegrated immediately to yield the solution ¢(z,y)= c. Unfortunately,
though, there are only two special cases where we can find an explicit solu-
tion of (9). These occur when the differential equation (7) has an integrat-
ing factor which is either a function of ¢ alone, or a function of y alone.
Observe that if p is a function of ¢ alone, then Equation (9) reduces to

(3_M¢3_N)
dp (M AN do \ & A
th_“( dy az) dr N -

But this equation is meaningless unless the expression
oM  ON

ay ot
—
is a function of ¢ alone, that is,
oM ON

ay ot

~ =R (1).

If this is the case then ,u(t)=exp(fR ) dt) is an integrating factor for the
differential equation (7).

Remark. It should be noted that the expression

oM oN

dy dat
N

is almost always a function of both ¢ and y. Only for very special pairs of
functions M (t,y) and N (¢,) is it a function of ¢ alone. A similar situatioh
occurs if u is a function of y alone (see Exercise 17). It is for this reason
that we cannot solve very many differential equations.

Example 6. Find the general solution of the differential equation
2
L t t ﬂ =
3 +2ye'+(y+e )dt 0.

Solution. Here M (t,y)=(y?/2)+2ye’ and N (t,y)=y + e'. This equation is
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1.9 Exact equations, and why we cannot solve very many differential equations

not exact since 0M /dy =y +2e’ and 9N /dt=e’. However,

1 (8_M_8N)=y+e'=

N\ o L

y+e'

Hence, this equation has y(t)=exp( f 1dt)=e’ as an integrating factor.

This means, of course, that the equivalent differential equation

2
A’ % oY _
e +2ye* +(ye'+e )dt 0

is exact. Therefore, there exists a function ¢(¢,y) such that

2
N Y 2:_6_‘1’
1) ¢ +2ye” = 5

and
.. 0o
t 2 7
(ii) ye‘+e W
From Equations (i) and (ii),
2
o(t,y)= 7e’+ye2’+h(y)

and
y
o(t,y)= 5 e'+yer + k(1)

Thus, h(y)=0, k(t)=0 and the general solution of the differential equation

18
2

o(t,y)= Zz—e’+ye2’=c.

Solving this equation for y as a function of ¢ we see that
y()=—e'x [e2’+2ce"]1/2.

Example 7. Use the methods of this section to find the general solution of
the linear equation (dy/dt)+ a(#)y = b(¢).

Solution. We write this equation in the form M (t,y)+ N (t,y)(dy/dt)=0
with M (¢,yy=a(t)y — b(¢) and N (z,y)=1. This equation is not exact since
0M /3y = a(f) and ON/d¢t=0. However, ((0M/dy)— (dN/3¢))/N =a(t).

Hence, p.(t)=exp( f a(t) dt) is an integrating factor for the first-order lin-

ear equation. Therefore, there exists a function ¢(¢,y) such that

@) (0a(vy=b(n]= 2
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1 First-order differential equations

and

d
(i) ()= 5

Now, observe from (ii) that ¢(z,y) = u(f)y + k(¢). Differentiating this equa-
tion with respect to ¢ and using (i) we see that

W)y + k' ()=p()a(t)y —pn(0)b(1).
But, w'(¢)=a(¢) p(¢). Consequently, k'(z)= — u(£)b(¢) and
#(ty)=w(0)y— [ (b()d.

Hence, the general solution of the first-order linear equation is
n(t)y — fu(t)b(t) dt=c,

and this is the result we obtained in Section 1.2.

EXERCISES

1. Use the theorem of equality of mixed partial derivatives to show that oM /dy
= 9N/ dt if the equation M (¢,y)+ N (t,y)(dy/dr)=0 is exact.

2. Show that the expression M (t,y)— f (3N (1,y)/d1t)dy is a function of ¢ alone if
oM /dy=0N/ot.

In each of Problems 3-6 find the general solution of the given differential
equation.

3. 2tsiny +ye! + (2 cosy +3y2e')% =0

4, l+(1+W)eW+(l+t2eW)%=0

5. ysec2t+secttant+(2y+tant)% =0

o &

t _ 0 _
6. 5 2ye’ +(y e)dt 0

In each of Problems 7-11, solve the given initial-value problem.

7. 2ty3+3t2y2%=0, y(H=1
8. 2tcosy+312y+(t3—tzsiny—y)%=0, y(0)=2
2 2D _
9. 3t +4ty+(2y+2t)E— ,  y(0)=1
10. y(cos2t)e” —2(sin2f)e? + 2t + (t(cos2t)e? —3)% =0, y@©0)=0
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1.10 The existence—uniqueness theorem; Picard iteration

34yt p) D =0, y@)=1

In each of Problems 12-14, determine the constant a so that the equation
is exact, and then solve the resulting equation.

12.

13.

14.

15.
16.

17.

18.

19.

20.

t+ye?” + atez‘y% =0

t+1
l+_1_+(a )Q—O

2y 3 dr

e +312p2+ 23 + e"’*y)% =0

Show that every separable equation of the form M (¢)+ N (y)dy/dt=0is exact.

Find all functions f(¢) such that the differential equation
Y2sint+yf (1)(dy / di) =0

is exact. Solve the differential equation for these f(¢).

Show that if ((dN/3t)—(dM/dy))/ M = Q(y), then the differential equation

M (t,y)+ N (t,y)dy /dt =0 has an integrating factor u(y)= exp(fQ (y)dy).

The differential equation f(£)(dy/dt)+ t*+y =0 is known to have an integrat-

ing factor u(#)=1t. Find all possible functions f(?).

The differential equation e‘secy —tany +(dy /df)=0 has an integrating factor
of the form e ~#cosy for some constant a. Find a, and then solve the differen-
tial equation.

The Bernoulli differential equation is (dy/dt)+ a(?)y = b(¢)y". Multiplying
through by p(f)= exp( f a(t) dt), we can rewrite this equation in the form
d/dt(u(t)y)=b(t) u(r)y". Find the general solution of this equation by find-

ing an appropriate integrating factor. Hint: Divide both sides of the equation
by an appropriate function of y.

1.10 The existence-uniqueness theorem; Picard iteration

Consider the initial-value problem

7
Z =1ty ()= (1)

where f is a given function of ¢ and y. Chances are, as the remarks in Sec-
tion 1.9 indicate, that we will be unable to solve (1) explicitly. This leads us
to ask the following questions.

1. How are we to know that the initial-value problem (1) actually has a

solution if we can’t exhibit it?
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1 First-order differential equations

2. How do we know that there is only one solution y(f) of (1)? Perhaps
there are two, three, or even infinitely many solutions.

3. Why bother asking the first two questions? After all, what’s the use of
determining whether (1) has a unique solution if we won’t be able to ex-
plicitly exhibit it?

The answer to the third question lies in the observation that it is never
necessary, in applications, to find the solution y(¢) of (1) to more than a
finite number of decimal places. Usually, it is more than sufficient to find
(1) to four decimal places. As we shall see in Sections 1.13-17, this can be
done quite easily with the aid of a digital computer. In fact, we will be able
to compute y(f) to eight, and even sixteen, decimal places. Thus, the
knowledge that (1) has a unique solution y(¢) is our hunting license to go
looking for it.

To resolve the first question, we must establish the existence of a func-
tion y(#) whose value at t=1¢, is y, and whose derivative at any time ¢
equals f(¢,y(¢)). In order to accomplish this, we must find a theorem which
enables us to establish the existence of a function having certain proper-
ties, without our having to exhibit this function explicitly. If we search
through the Calculus, we find that we encounter such a situation exactly
once, and this is in connection with the theory of limits. As we show in Ap-
pendix B, it is often possible to prove that a sequence of functions y, () has
a limit y(¢), without our having to exhibit y (). For example, we can prove
that the sequence of functions

yo(1)= gllzvr_t_*_ smém + s1r'11;;7rt
has a limit y () even though we cannot exhibit y (¢) explicitly. This suggests
the following algorithm for proving the existence of a solution y(?) of (1).

(a) Construct a sequence of functions y,(#) which come closer and closer
to solving (1).

(b) Show that the sequence of functions y,(¢) has a limit y(¢) on a suitable
interval £, < < f5+ a.

(c) Prove that y(¢) is a solution of (1) on this interval.

We now show how to implement this algorithm.

(a) Construction of the approximating sequence y,(t)

The problem of finding a sequence of functions that come closer and
closer to satisfying a certain equation is one that arises quite often in
mathematics. Experience has shown that it is often easiest to resolve this
problem when our equation can be written in the special form

y(0)=L(ty(1)); )
where L may depend explicitly on y, and on integrals of functions of y.
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For example, we may wish to find a function y(¢) satisfying

y()=1+sin[t+y(1)],

or
t

y(O)=1+y2(1)+ [ y*(s)ds.
0

In these two cases, L(t,y(?)) is an abbreviation for

1+sin[t+y ()]

and

1+y2(t)+f0'y3(s)ds,

respectively.

The key to understanding what is special about Equation (2) is to view
L(t,y()) as a “machine” that takes in one function and gives back another
one. For example, let

L(t,y(1))=1+y*(0)+ foly3(s)a’s.

If we plug the function y(¢)=1 into this machine, (that is, if we compute

1+ 2+ [ 's3ds) then the machine returns to us the function 1+ 2+ r*/4. If

0 . . . . .
we plug the function y(f)=rcos¢? into this machine, then it returns to us the
function

3

1+cos2t+ftcos3sds= 1+cos?t +sint — 381

0 3

According to this viewpoint, we can characterize all solutions y(¢) of (2) as
those functions y(¢) which the machine L leaves unchanged. In other
words, if we plug a function y(¢) into the machine L, and the machine re-

turns to us this same function, then y(¢) is a solution of (2).
We can put the initial-value problem (1) into the special form (2) by in-
tegrating both sides of the differential equation y’ = f(¢,y) with respect to ¢.

Specifically, if y(¢) satisfies (1), then

ft ag)ds=j;tf(s,y(s))ds

1)

so that
y(O=yo+ [ Flsy (). 3)

Conversely, if y(¢) is continuous and satisfies (3), then dy/dr=f(2,y(1)).
Moreover, y(t,) is obviously y,. Therefore, y(t) is a solution of (1) if, and
only if, it is a continuous solution of (3).
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1 First-order differential equations

Equation (3) is called an integral equation, and it is in the special form
(2) if we set

L(t,y(t))=y,+ 'f;tf(s,y(s))ds.

This suggests the following scheme for constructing a sequence of “‘ap-
proximate solutions” y, (¢) of (3). Let us start by guessing a solution y(¢) of
(3). The simplest possible guess is yo(f)=y, To check whether yy(7) is a
solution of (3), we compute

yl(f)=yo+f’tf(s,yo(~v))¢f-

If y,(£)=y,, then y(f)=y, is indeed a solution of (3). If not, then we try
y1(#) as our next guess. To check whether y,(7) is a solution of (3), we com-
pute

nO=yo+ [ sy (s)) d,

and so on. In this manner, we define a sequence of functions y,(¢),
yo(),..., where

Saar(D=r0+ [ f(s0,(5))ds @

These functions y,(f) are called successive approximations, or Picard
iterates, after the French mathematician Picard who first discovered them.
Remarkably, these Picard iterates always converge, on a suitable interval,
to a solution y(¢) of (3).

Example 1. Compute the Picard iterates for the initial-value problem

y'=y, y0)=1,

and show that they converge to the solution y(f)=e’.
Solution. The integral equation corresponding to this initial-value problem
is

t
y(O)=1+ [y (s)ds.
0
Hence, yo(H)=1
n(=1+ [1ds=1+1
0
t2

=1+ [y, (s)ds=1+ [(1+5)d
y2(H)= +f0y,(s) s = +f0( +s)ds=1+1+ 7
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1.10 The existence-uniqueness theorem; Picard iteration

and, in general,

)’,,(t)=1+j(;’yn_l(s)ds=l+f
0

t2 t"
=1+t+i+...+m.
Since e‘=1+1t+12/2!+ ..., we see that the Picard iterates y,(f) converge
to the solution y(¢) of this initial-value problem.

n—1
T+s+...+— ds

(n—1)!

Example 2. Compute the Picard iterates y,(¢),y,(f) for the initial-value
problem y'=1+y3 y(1)=1.

Solution. The integral equation corresponding to this initial-value problem
is

- ' 3
y (%) 1+fl [1+2°(s)]ds.
Hence, yy(1)=1

n@=1+ [(1+1)ds=1+2(-1)
1

and

yz(z)=1+fl'{1+[1+2(s—1)]’}ds

=1+42(1=1)+3(t= 1> +4(1 = 1> +2(: - 1)*.

Notice that it is already quite cumbersome to compute y4(¢).

(b) Convergence of the Picard iterates

As was mentioned in Section 1.4, the solutions of nonlinear differential
equations may not exist for all time ¢. Therefore, we cannot expect the
Picard iterates y,(¢) of (3) to converge for all . To provide us with a clue,
or estimate, of where the Picard iterates converge, we try to find an inter-
val in which all the y,(¢) are uniformly bounded (that is, |y,(?)| < K for
some fixed constant K). Equivalently, we seek a rectangle R which con-
tains the graphs of all the Picard iterates y,(¢). Lemma 1 shows us how to
find such a rectangle.

Lemma 1. Choose any two positive humbers a and b, and let R be the rectan-
gle: t,<t<ty+a,|y—yq| < b. Compute

M= (t,yn;aiﬁklf("Y)L and set a=min(a, %)
Then,
IJ’n(t)—yOKM(;._,O) (5)
Jor ty< 1< ty+a
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1 First-order differential equations

Lemma 1 states that the graph of y,(¢) is sandwiched between the lines
y=yo+M(t—1t) and y=y,— M(t—1tg), for t,< < t5+ a. These lines
leave the rectangle R at t=t,+a if a<b/M, and at t=1,+b/M if b/M
< a (see Figures 1a and 15). In either case, therefore, the graph of y,(¢) is
contained in R for ¢, < t <ty + a.

y;b

Figure 1. (@) a=a; (b) a=b/M

ProOOF oF LEMMA 1. We establish (5) by induction on n. Observe first that
(5) is obviously true for n=0, since y,(7)=y,. Next, we must show that (5)
is true for n=j+1 if it is true for n=. But this follows immediately, for if
|5 (8) = yol < M (1 — 1p), then

[Yj41(8) =yl = ‘fttf(s,yj(s))ds

t
<ft [f(5,7;(s))lds < M (t— 1)
0
for 1, < t < 14+ a. Consequently, (5) is true for all n, by induction. O
We now show that the Picard iterates y,(7) of (3) converge for each ¢ in
the interval 1, < t < 1+ a, if 3f /dy exists and is continuous. Our first step is
to reduce the problem of showing that the sequence of functions y,(r) con-

verges to the much simpler problem of proving that an infinite series con-
verges. This is accomplished by writing y,(¢) in the form

In(O)=ro()+ [ 1) =yo() ]+ .. + [ ya (D) =racr (1)].
Clearly, the sequence y, () converges if, and only if, the infinite series

1O =2e]+ [22() =31+ o + [ 7 (D=2 (D] + . (6)

converges. To prove that the infinite series (6) converges, it suffices to
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1.10 The existence—uniqueness theorem; Picard iteration

show that

S, ()= i(0]< e ")

This is accomplished in the following manner. Observe that

7a(8)=yur (D] =

ftz[f(S,yn_l(s)) _f(S,y,,_z(s))]ds
<f, 1£(8Tmo1(8) = (5:2(5))] ds

=[

0

of (5,4(s))

W | Yn—1(8) = Ya_2(5)| s,

where §(s) lies between y,_,(s) and y,_,(s). (Recall that f(x,)—f(x,) =
S (§)(x; — x,), where § is some number between x; and x,.) It follows im-
mediately from Lemma 1 that the points (s,£(s)) all lie in the rectangle R
for s <ty+ a. Consequently,

t
])’n([)"yn—l(t)KLft | Yo 1(5) = Yn—2(s)|ds, Lh<t<tyta, (8)
1)

where
of (£.y)
L= . 9
B )
Equation (9) defines the constant L. Setting n=2 in (8) gives
t t
920 =7 (L[ 171(5)=yolds <L [ M (s=1)ds
N Iy
LM (t— 1)
-
This, in turn, implies that
t 2
t (s—1to)
|J’3(t)_)’2(t)|<Lf IY2(S)_Y1(5)|d5<ML2f ) ds
Iy o
ML*(t—t,)°
BT
Proceeding inductively, we see that
ML" ' (t—1,)"
V(D)= yu_ 1 (D] K —————, forfy<t<y+a. (10)

n!
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1 First-order differential equations

Therefore, for t, <1< ty+a,

|1 () =yo (DI + |y () =y (D] + ...

ML(t—t,)> ML (1—1,)°
TEET

MLa? + ML%?

2! 3!

M (ozL)2 (01L)3
TIE]

< Ma+

+...

This quantity, obviously, is less than infinity. Consequently, the Picard
iterates y,(t) converge for each ¢ in the interval #,< <3+ a. (A similar
argument shows that y,(f) converges for each ¢ in the interval 1,— <<
t5, where S =min(a,b/N), and N is the maximum value of |f(z,y)| for
(t,y) in the rectangle 7,— a <1< ty,|y —yo| < b.) We will denote the limit of
the sequence y,(¢) by y (). O

(c) Proof that y(t) satisfies the initial-value problem (1)
We will show that y(r) satisfies the integral equation
t
y(t)=y0+ft F(5,9(s)) ds (1)
0

and that y(¢) is continuous. To this end, recall that the Picard iterates y,(¢)
are defined recursively through the equation

t
Vus1()=yo+ [ f(5,9,(s))ds. (12)
fo
Taking limits of both sides of (12) gives

. t
(1) =ye+ lim [Of(s,yn<s))ds. (13)
To show that the right-hand side of (13) equals

yo+ [ S5y (5))ds,

(that is, to justify passing the limit through the integral sign) we must show
that

| [ 1r)as= [ smio)ds

approaches zero as n approaches infinity. This is accomplished in the
following manner. Observe first that the graph of y(7) lies in the rectangle
R for t < ty+ a, since it is the limit of functions y,(¢) whose graphs lie in R.
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1.10 The existence-uniqueness theorem; Picard iteration

Hence

_[tf(S,Y(S))ds—j;tf(s,yn(s))ds

<f 175y () =S sa(ds < L[ 19(5) = ya(s)] ds

where L is defined by Equation (9). Next, observe that

$()=7,(5) = éﬂ [/(9)=%1(9]
since
»(5)=yo+ ,2, [5,()=51()]
and

)=yt 3T =ry1 ()]

J=1

Consequently, from (10),

- . (s_to)j
() -y <M D) L
j=n+1 J:
[o ] o0 J
L& M (al)
<MD =T > T (14)
j=n+1 j=n+1

and

w$ e,

fttf(s,y(s))ds— f'lf(s,yn(s))ds

!
j=n+1 J: ‘o
o J
(aL)
< Ma E T
j=n+1

This summation approaches zero as n approaches infinity, since it is the
tail end of the convergent Taylor series expansion of e*~. Hence,

Jm [y, (9)ds= [ f(s.y(9)ds

and y(¢) satisfies (11).
To show that y(¢) is continuous, we must show that for every ¢ >0 we
can find & >0 such that

ly(t+h)—y(1)|<e if |h|<8.

Now, we cannot compare y(¢+ h) with y(¢) directly, since we do not know
y(?) explicitly. To overcome this difficulty, we choose a large integer N and
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1 First-order differential equations

observe that
y(t+h)=y(0)=[y(t+h)—yy(1+h)]
+[on(t+R) =y () ]+ [ n (D) =x(0)].
Specifically, we choose N so large that
o J
M (al)’
S

j=N+1 J: 3

Then, from (14),
p(t+R) =yy(t+R)|<3 and |yy()-y()I<3,

for t < ty+ a, and h sufficiently small (so that 1+ h < #,+ a.) Next, observe
that yy (¢) is continuous, since it is obtained from N repeated integrations
of continuous functions. Therefore, we can choose § >0 so small that

yw(t+B)=yy (0] <5 for |h]<8.

Consequently,
ly(t+R) =y () <|y(t+h)=yy(t+h)|[+|yn (14 h)—yy (D))

€, €&, & _
How()—y()<3 +3+3=¢

for |h} < 8. Therefore, y(¢) is a continuous solution of the integral equation
(11), and this completes our proof that y(r) satisfies (1). 0O

In summary, we have proven the following theorem.

Theorem 2. Let f and df/dy be continuous in the rectangle R:t,< t< ty+a,
|y —yol < b. Compute

. b
M= L), d set = ,y=— |.
(wm)ah)l(R|f( y)l, andset « mm(a M)

Then, the initial-value problem y’' = f(t,y), y (t,) =y, has at least one solu-
tion y(t) on the interval ty< t<ty+ a. A similar result is true for t <1,

Remark. The number « in Theorem 2 depends specifically on our choice
of a and b. Different choices of a and b lead to different values of a.
Moreover, a doesn’t necessarily increase when a and b increase, since an
increase in @ or b will generally result in an increase in M.

Finally, we turn our attention to the problem of uniqueness of solutions
of (1). Consider the initial-value problem

d
= =(sin20)y' y(0)=0. (15)
One solution of (15) is y(¢+)=0. Additional solutions can be obtained if we
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1.10 The existence—uniqueness theorem; Picard iteration

ignore the fact that y(0)=0 and rewrite the differential equation in the
form

1 & .

N 7 =sin2i,
or

d "

P =sin2¢.
Then,

2/3 1 -
3y2 _ (2:os 2t _ sin? ¢

and y =+ V' 8/27 sin®t are two additional solutions of (15).

Now, initial-value problems that have more than one solution are
clearly unacceptable in applications. Therefore, it is important for us to
find out exactly what is “wrong” with the initial-value problem (15) that it
has more than one solution. If we look carefully at the right-hand side of
this differential equation, we see that it does not have a partial derivative
with respect to y at y =0. This is indeed the problem, as the following theo-
rem shows.

Theorem 2'. Let f and of / dy be continuous in the rectangle R :t,< 1< ty+a,
|y —yol < b. Compute

. b
M= ty)l, d set o= il
(t’ym)ai;(RIf( y)|, andset « mm(a M)

Then, the initial-value problem

y'=f(ty),  »y(t)=y, (16)
has a unique solution y(t) on the interval ty< t < ty+ . In other words, if
y(t) and z(t) are two solutions of (16), then y(t) must equal z(t) for ty<t
<thta.

Proor. Theorem 2 guarantees the existence of at least one solution y(¢) of
(16). Suppose that z(r) is a second solution of (16). Then,

y(l)=y0+'f;lf(s,y(s))ds and z(t)=y0+j;tf(s,z(s))ds.

Subtracting these two equations gives

ly())==z(n)|=

INCIORTEOIE
< f’ 1£(57(5) = £(5,2(s))| ds
< Lfttly(s)—z(s)us
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1 First-order differential equations

where L is the maximum value of |3f/dy| for (z,y) in R. As Lemma 2 be-
low shows, this inequality implies that y(#)=z(r). Hence, the initial-value
problem (16) has a unique solution y (¢). O

Lemma 2. Let w(¢) be a nonnegative function, with

w(1) < Lfttw(s)ds. (17)

Then, w(t) is identically zero.

FakE PrOOF. Differentiating both sides of (17) gives

dw dw
7 <Lw(t), or i Lw(1)<0.

Multiplying both sides of this inequality by the integrating factor e ~£¢~%
gives
£ oL Wy(1)<0, sothat e™H0~Ow(r) < w(iy)

for t > t,. But w(#,) must be zero if w(t) is nonnegative and satisfies (17).
Consequently, e £¢~w(£) <0, and this implies that w(¢) is identically
zero.

The error in this proof, of course, is that we cannot differentiate both
sides of an inequality, and still expect to preserve the inequality. For exam-
ple, the function fi(¢)=2¢~2 is less than f,(f)=¢ on the interval [0, 1], but
Sfi(¢) is greater than f5(¢) on this interval. We make this proof ‘“kosher” by
the clever trick of setting

U(n)= ft’w(s)ds.
Then,

du

SL=w(n< Lf,(,tW(S)a’s= LU(®).

Consequently, e “LC=U (1)< U(2)=0, for ¢ > t,, and thus U(£)=0. This,
in turn, implies that w(£)=0 since

o<w(t)<L[’w(s)ds=w(t)=o. O

Example 3. Show that the solution y(¢) of the initial-value problem

Y _
E_t +e™, y(0)=0

exists for 0< 7 <, and in this interval, |y (£)| < 1.
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1.10 The existence-uniqueness theorem; Picard iteration

Solution. Let R be the rectangle 0< ¢ < 3, || < 1. Computing

H

2
M= max f+eV'=1+(3)=
(t,y)in R

ENY)

we see that y(r) exists for

O<t<min(l,L)=

1
2°5/4) 2’

and in this interval, | y(?)|< 1.

Example 4. Show that the solution y(¢) of the initial-value problem
dy -2 3

il +y°,  y(0)=1

exists for 0< 7<1/9, and in this interval, 0< y <2.
Solution. Let R be the rectangle 0< ¢ <}, 0< y <2. Computing

M= max e “+)3=1+23=9,
(ty)inR
we see that y(¢) exists for
0<¢<min(3,3)

and in this interval, 0< y <2.

Example 5. What is the largest interval of existence that Theorem 2 pre-
dicts for the solution y(¢) of the initial-value problem y’=1+y2 y(0)=0?
Solution. Let R be the rectangle 0< ¢ < a, | y| < b. Computing

M= max l+yr=1+05b?
(t,y)in R

we see that y(¢) exists for
. b
0<t<a=minla,—— .
1+ b2

Clearly, the largest « that we can achieve is the maximum value of the
function /(1 + b?). This maximum value is 3. Hence, Theorem 2 predicts
that y(r) exists for 0< ¢ < 1. The fact that y(f)=tanz exists for 0< 7 <7 /2
points out the limitation of Theorem 2.

Example 6. Suppose that | f(¢,y)| < K in the strip 7,< 1 <00, — 00 <y < 0.
Show that the solution y(r) of the initial-value problem y’= f(¢,y), y(t;)=
Yo exists for all ¢> ¢#,.

Solution. Let R be the rectangle £,< ¢t < 7,+a, |y —y¢| < b. The quantity

M= t,
(a1l
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1 First-order differential equations

is at most K. Hence, y(¢) exists for
ty<t<ty+min(a,b/K).

Now, we can make the quantity min(a,b/K) as large as desired by choos-
ing a and b sufficiently large. Therefore y(r) exists for ¢ > ¢,.

EXERCISES

1. Construct the Picard iterates for the initial-value problem y’'=2¢(y +1), y(0)=
0 and show that they converge to the solution y(f)=e" —1.

2. Compute the first two Picard iterates for the initial-value problem y’= >+ y?,
y@=1.

3. Compute the first three Picard iterates for the initial-value problem y’= e’ +y?,
»(0)=0.

In each of Problems 4--15, show that the solution y(¢) of the given initial-
value problem exists on the specified interval.

4. y'=y?+cost’, y(0)=0; 0<r<!i

5.y’ =1+y+y*cost, y(0)=0; 0<r<1

6.y =1+y%y0)=0;0<1< (¥

7. y'=e "4y y(0)=0; 0<1<;

8 y=e"+yLy(l)=0;1<t<1+ Ve /2
__ V2
1+(1+V2)?
10. y=y+e 7 +e”, p(0)=0; 0<r<]

9. y'=e "+ yO)=1; 0<t<

L y'=y’+e™% y0)=04; 0<r1<3;

12. y)=eVU =7 y0)=1; 0<t< \/32—18_«”\,3,,2):

13. y'=@dy+e e?, y(0)=0; 0<i< 3

1

Ve

M. y'=e '+In(1+y?), y(0)=0; 0<r<oo
15. y'=1(1+cosdf)y — gs(1 —cosdn)y?, y(0)=100; 0<t<1
16. Consider the initial-value problem
y=r+y%,  y(0)=0, ™

and let R be the rectangle 0< < a, —b< y<b.
(a) Show that the solution y(¢) of (*) exists for

. b
0< t<m1n(a, -———)
a’+b?
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1.11 Finding roots of equations by iteration

(b) Show that the maximum value of b/(a?+ b?), for a fixed, is 1/2a.
(c) Show that a=min(a, }a) is largest when a=1/V2 .
(d) Conclude that the solution y(r) of (*) exists for 0<r<1/V2 .
17. Prove that y(#)= —1 is the only solution of the initial-value problem
y'=t(l+y), »(0)=-1
18. Find a nontrivial solution of the initial-value problem y’=14, y(0)=0, a> 1.
Does this violate Theorem 2'? Explain.

19. Find a solution of the initial-value problem y’=¢\/1-y? , y(0)=1, other than
y()=1. Does this violate Theorem 2’? Explain.

20. Here is an alternate proof of Lemma 2. Let w(¢) be a nonnegative function
with

w(t) < Lf"w(s)ds @)

on the interval 7y < ¢ < fy+ . Since w(?) is continuous, we can find a constant

A such that 0< w(?) < 4 for (p< 1< ty+a.

(a) Show that w(#) < LA(z— ty).

(b) Use this estimate of w(¢) in (*) to obtain

AL2(t—t,)

—

(c¢) Proceeding inductively, show that w(¢) < AL"(1—1,)"/n!, for every integer
n.

(d) Conclude that w(z)=0 for t,< t < fy+a.

w(?) <

1.11 Finding roots of equations by iteration

Suppose that we are interested in finding the roots of an equation having
the special form

x=f(x). (1)
For example, we might want to find the roots of the equation
x=sinx+3.
The methods introduced in the previous section suggest the following algo-

rithm for solving this problem.

1. Try an initial guess x,, and use this number to construct a sequence of
guesses xy, Xy, X3,..., where x,=f(x,), x,=f(x,), x3=f(x;), and so on.

2. Show that this sequence of iterates x, has a limit 4 as n approaches in-
finity.

3. Show that 7 is a root of (1); i.e., n=F(9).

The following theorem tells us when this algorithm will work.

Theorem 3. Let f(x) and f'(x) be continuous in the interval a < x < b, with
| f/(x)] A< 1 in this interval. Suppose, moreover, that the iterates x,, de-
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1 First-order differential equations

fined recursively by the equation

X1 =f(%5) @
all lie in the interval [a,b). Then, the iterates x,, converge to a unique num-
ber q satisfying (1).

Proor. We convert the problem of proving that the sequence x, converges
to the simpler problem of proving that an infinite series converges by writ-
ing x, in the form

X, =Xo+ (x;— x0)+ (%= x )+ ... +(x,— x,_)-
Clearly, the sequence x, converges if, and only if, the infinite series
o0
(x1=X) H(Xy= X)) F oo+ (X, = Xy )+ o= X (X~ X, y)
n=1

converges. To prove that this infinite series converges, it suffices to show
that

[o <]
)= x| + X=X )|+ oo = X X, — x| < 0.
n=1

This is accomplished in the following manner. By definition, x,=f(x,_,)
and x,_,=f(x,_,). Subtracting these two equations gives

Xn = Xp—1 =f(‘xn—1) —f(xn-—Z) =f’(£)(xn—l - xn—2)’

where £ is some number between x,_, and x,_,. In particular, £ is in the
interval [a,b]. Therefore, | f'(£)| <A, and

|xn—xn—l'<}‘|xn—l—xn—2|' (3)
Iterating this inequality n—1 times gives
lxn = Xn— 1| < M'xn— 1= Jcn—2‘
< Az|xn—2_ X, —3|

n

<A x, = x.

Consequently,
o0 o0
> X=Xyl < 2 A"y = x|
n=1 n=1
X;i— X
=lx1—x0|[1+}\+}\2+...]=|—il—_—>\0—|.

This quantity, obviously, is less than infinity. Therefore, the sequence of
iterates x, has a limit n as n approaches infinity. Taking limits of both

82



1.11 Finding roots of equations by iteration

sides of (2) gives
n= M % = Jim, S (o) = (n):

Hence, 7 is a root of (1).
Finally, suppose that 7 is not unique; that is, there exist two solutions 7,
and 7, of (1) in the interval [a,b]. Then,

" 772=f(711) —f(nz) =f,(£)("71 — M),

where £ is some number between 7, and n,. This implies that 5, =7, or f'(§)
= 1. But f'(£) cannot be one, since £ is in the interval [a, b]. Therefore, 1, =

M2 O
Example 1. Show that the sequence of iterates
X X;=1+3larctanxy, x,=1+jarctanx,,...
converge to a unique number 7 satisfying
n=1+larctany

for every initial guess x,.

Solution. Let f(x)=1+ 3 arctanx. Computing f'(x)=11/(1+ x?), we see
that | f'(x)| is always less than or equal to 3. Hence, by Theorem 3, the
sequence of iterates xg, x;,x,,... converges to the unique root n of the

equation x =1+ jarctanx, for every choice of x,.

There are many instances where we know, a priori, that the equation
x=f(x) has a unique solution 5 in a given interval [a,b]. In these in-
stances, we can use Theorem 3 to obtain a very good approximation of 7.
Indeed, life is especially simple in these instances, since we don’t have to
check that the iterates x, all lie in a specified interval. If x, is sufficiently
close to 1, then the iterates x, will always converge to 7, as we now show.

Theorem 4. Assume that f(n)=n, and that |f'(x)| <A <1 in the interval
|x —n| < a. Choose a number x, in this interval. Then, the sequence of
iterates x,,, defined recursively by the equation x, . ,=f(x,), will always
converge to 1.

Proor. Denote the interval |x —n| < a by I. By Theorem 3, it suffices to
show that all the iterates x, lie in 1. To this end, observe that

X —n=f(x)~f(n)=f()(x;—n)

where £ is some number between x; and 7. In particular, £ is in 7 if x; is in
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1 First-order differential equations

I. Thus,
2% 41— 1| <Alx; — 0] <|x;— | (4)

if x; is in 1. This implies that x;,, is in  whenever x; is in /. By induction,
therefore, all the iterates x, lie in /. O

Equation (4) also shows that x, , , is closer to 5 than x,. Specifically, the
error we make in approximating i by x, decreases by at least a factor of A
each time we increase n. Thus, if A is very small, then the convergence of x,
to n is very rapid, while if A is close to one, then the convergence is very
slow.

Example 2.
(a) Show that the equation

x=sinx+ 3 Q)

has a unique root 7 in the interval [7 /4,7 /2].
(b) Show that the sequence of numbers

=i 1 - 1
Xg X;=SmMXxp+gz, X;=sinx;+g,...

will converge to 0 if w/4< xy< 7 /2.

(c) Write a computer program to evaluate the first N iterates x,,x,,...,Xy-
Solution.

(a) Let g(x)=x—sinx — }, and observe that g(w/4) is negative while
g(7 /2) is positive. Moreover, g(x) is a monotonic increasing function of x
for w/4< x < m /2, since its derivative is strictly positive in this interval.
Therefore, Equation (5) has a unique root x =7 in the interval 7/4< x <
7/2.

(b) Let I denote the interval n—~#/4< x <+ «w/4. The left endpoint of
this interval is greater than zero, while the right endpoint is less than 37 /4.
Hence, there exists a number A, with 0 <A < 1, such that

<A

|cos x| =‘%(sinx+ 3

for x in I. Clearly, the interval [7 /4,7 /2] is contained in /. Therefore, by
Theorem 4, the sequence of numbers

Xp X =sinxg+1, x,=sinx,+1,...
will converge to i for every x, in the interval [7 /4,7 /2].
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1.11 Finding roots of equations by iteration

©

Pascal Program

Program lterate (input, output);
var

X: array[0..199] of real;

k, N: integer;

begin
readin(X[0], N);
page;
writeln(‘N’:4, ‘X[N]':14);
for k :=0to N do
begin
writeln(K:4,‘ ":4, X[k]:17:9);
X[k+1] :=0.25+sin(X[K]);
end;
end.

Fortran Program

DIMENSION X(200)
READ (5,10) X0,N
10 FORMAT (F15.8, 15)
c COMPUTE X(1) FIRST
X(1)=0.25 + SIN(X0)
KA=0
KB=1
WRITE (6, 20) KA, X0, KB, X(1)
20 FORMAT (1H1,4X, ‘N, 10X, ‘X’ /(1H, 3X, 13, 4X, F15.9))
c COMPUTE X(2) THRU X(N)
D040 K=2,N
X(K)=0.25 + SIN(X(K — 1))
WRITE (6,30) K, X(K)
30 FORMAT (1H, 3X, 13, 4X, F15.9)
40 CONTINUE
CALL EXIT
END

See also C Program 1 in Appendix C for a sample C program.
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1 First-order differential equations

Table 1

n X, n X,

0 1 8 1.17110411
1 1.09147099 9 1.17122962
2 1.13730626 10 1.17122964
3 1.15750531 11 1.17122965
4 1.16580403 12 1.17122965
5 1.16910543 13 1.17122965
6 1.17040121 14 1.17122965
7 1.17090706 15 1.17122965

In many instances, we want to compute a root of the equation x = f(x)
to within a certain accuracy. The easiest, and most efficient way of accom-
plishing this is to instruct the computer to terminate the program at k= if
X; 41 agrees with x; within the prescribed accuracy.

EXERCISES

1. Let n be the unique root of Equation (5).
(a) Let xo==/4. Show that 20 iterations are required to find 5 to 8 significant
decimal places.
(b) Let xo=u/2. Show that 20 iterations are required to find 1 to 8 decimal
places.
(c). Let xo=37/8. Show that 16 iterations are required to find n to 8 decimal
places.

2. (a) Determine suitable values of x, so that the iterates x,, defined by the equa-
tion
Xp41=Xp— %(x"2—2)
will converge to V2 .

(b) Choose xo=1.4. Show that 14 iterations are required to find V2 to 8 signifi-
cant decimal places. (V2 =1.41421356 to 8 significant decimal places.)

3. (a) Determine suitable values of x; so that the iterates x,, defined by the equa-
tion
Xp+1= Xp— %(xnz_z)
will converge to V2 .

(b) Choose xo=1.4. Show that 30 iterations are required to find V2 to 6 signifi-
cant decimal places.

4, (a) Determine a suitable value of « so that the iterates x,, defined by the equa-
tion
x,,+l=x,,-—a(x,,2—3), xo=1.7
will converge to V3 .
(b) Find V3 to 6 significant decimal places.
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1.11 Finding roots of equations by iteration

5. Let 1 be the unique root of the equation x=1+ 1 arctanx. Find  to 5 signifi-
cant decimal places.

6. (a) Show that the equation 2— x =(Inx)/4 has a unique root x=mn in the inter-
val 0< x < c0.
(b) Let
X,+1=2—(Inx,)/4, n=0,1,2,...
Show that 1 < x, <2if 1< xo<2.

(c) Prove that x,—n as n—oo if 1 < x3<2.
(d) Compute 7 to 5 significant decimal places.

7. (a) Show that the equation x = cosx has a unique root x =7 in the interval 0 < x
<l
(b) Let x,,.,=cosx,, n=0,1,2,..., with 0< xo< 1. Show that 0< x, < 1. Con-
clude, therefore, that x,—»n as n—oco.
(c) Find 7 to § significant decimal places.

1.11.1 Newton’s method

The method of iteration which we used to solve the equation x =f(x) can
also be used to solve the equation g(x)=0. To wit, any solution x=17 of
the equation g(x)=0 is also a solution of the equation

x=f(x)=x-g(x), (1

and vice-versa. Better yet, any solution x =7 of the equation g(x)=0 is
also a solution of the equation

g(x)
= = —_—— 2
x=f(R)=x= @
for any function h(x). Of course, A(x) must be unequal to zero for x near

7.

Equation (2) has an arbitrary function A(x) in it. Let us try and choose
h(x) so that (i) the assumptions of Theorem 4, Section 1.11 are satisfied,
and (ii) the iterates

_ g(xo) o g(x])
h(xo) 2T T hGey)

converge as “rapidly as possible” to the desired root 1. To this end, we
compute

Xo X115 Xp

oy 4| _EX]_ ) K()eR)
A dx[ h(x)} e T TRe
and observe that

(m=1— E
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1 First-order differential equations

This suggests that we set A(x)=g'(x), since then f'(n)=0. Consequently,
the iterates x,, defined recursively by the equation
8(x,)

Xp 1= X, 70’ n=0,12,... 3)
will converge to 7 if the initial guess x, is sufficiently close to n. (If f'()=
0, then | f'(x)| <A<1 for |x —n| sufficiently small.) Indeed, the choice of
h(x)=f'(x) is an optimal choice of h(x), since the convergence of x, to 7
will be extremely rapid. This follows immediately from the fact that the
number A in Equation 4, Section 1.11 can be taken arbitrarily small, as x,
approaches 7.

The iteration scheme (3) is known as Newton’s method for solving the
equation g(x)=0. It can be shown that if g(n)=0, and x, is sufficiently
close to 7, then

lxn+ 1= 7'| < c|x" - TI|2,
for some positive constant c¢. In other words, the error we make in ap-
proximating n by x, ., is proportional to the square of the error we make
in approximating n by x,. This type of convergence is called quadratic con-
vergence, and it implies that the iterates x, converge extremely rapidly to
7. In many instances, only five or six iterations are required to find 5 to
eight or more significant decimal places.

Example 1. Use Newton’s method to compute V2 .
Solution. The square root of two is a solution of the equation

g(x)=x*-2=0.
Hence, Newton’s scheme for this problem is
g(x,) (x.°=2)
Tt 1= T N T T T ax,
Xp 1
=—2—+—, n=0,1,2,.... 4)

n

Sample Pascal and Fortran programs to compute the first N iterates of an
initial guess x, are given below.

Pascal Program

Program Newton (input, output);
var

X: array[0..199] of real;

k, N: integer;

begin
readin(X[0], N);
page;
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1.11 Finding roots of equations by iteration

writeln(‘N’:4, ‘X[N]’:14);
fork :=0to N do
begin
writeln(K:4,* ’:4, X[k]:17:9);
X[k+ 1] :=X[k]}/2 + 1/X[K];

end;
end.
Table 1
n X, n X,
0 1.4 3 1.41421356
1 1.41428571 4 1.41421356
2 1.41421356 5 1.41421356

Fortran Program

We need only replace the instructions for computing X(1) and X(K) in the
Fortran program of Section 1.11 by

X(1)=(X0/2)+1/X0
and
X(K)=(X(K—1)/2)+1/X(K—1)

We ran these programs for x,=1.4 and N =5, and the results are given in
Table 1. Notice that Newton’s method requires only 2 iterations to find

V2 to eight significant decimal places.
See also C Program 2 in Appendix C for a sample C program.

Example 2. Use Newton’s method to find the impact velocity of the drums
in Section 1.7.
Solution. The impact velocity of the drums satisfies the equation

g(v)=v+30£;g+ Wc—Bln[ W;/{;cv]=0 )
where
¢=008, g=322, W=527436, and B=470.327.
Setting a=(W — B)/c and d=300cg/ W puts (5) in the simpler form
g(v)=v+d+aln(l-v/a)=0. (6)

Newton’s iteration scheme for this problem is
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1 First-order differential equations

g(w) _ , (-v/a)fv,+d+ain(l-v,/a)]

Op41 =0~ g/(vn) 0y Un/a

a—uv,
=0, — [v,+d+aln(l-v,/a)], n=0,1,2,....

n

Sample Pascal and Fortran programs to compute the first N iterates of v,
are given below.

Pascal Program

Program Newton (input, output);

const
¢ =0.08;
g =32.2;
W =527.436;
B =470.327;

var
V: array[0..199] of real;
a, d: real;
k, N: integer;

begin
readin(V[0], N);
= (W-B)/c;
d:=300+c+g/W;
page;
writeln(‘N":4, ‘V[N]':14);
fork:=0to N do
begin
writeln(K:4,* ":4,V[k]:17:9);
Vik+ 1] :=V[k] + ((a—V[k])/VIk])
«(VIK]+d+a=+In(1—(V[k]/a)));
end;
end.

Fortran Program
Change every X to V, and replace the instructions for X(1) and X(K) in the
Fortran program of Section 1.11 by
V(1)=VO0+((A—V0)/V0)* (VO+D+A*A LOG(1 — (VO /A))
and
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1.12 Difference equations

VIK)=VIK—1)+((A—=V(K—=1))/VIK—=1)} (V(K—1)+D
+A*xALOG {(1—-(V(K—1) /A))

(Before running these programs, of course, we must instruct the computer
to evaluate the constants a=(W — B)/c and d=300 cg/W.)

As was shown in Section 1.7, v,=45.7 is a very good approximation of
v. We set v;=45.7 in the above programs, and the iterates v, converged
very rapidly to v=45.1 ft/s. Thus, the drums can indeed break upon im-
pact.

In general, it is not possible to determine, a priori, how many iterations
will be required to achieve a certain accuracy. In practice, we usually take
N very large, and instruct the computer to terminate the program if one of
the iterates agrees with its predecessor to the desired accuracy.

See also C Program 3 in Appendix C for a sample C program.

EXERCISES

1. Show that the iterates x, defined by (4) will converge to V2 if
V2/3 <xo<V2 +(V2 -V2/3).
2. Use Newton’s method to find the following numbers to 8 significant decimal
places. (a) V3, (b) V5, (c) V7.
3. The number 7 is a root of the equation
tan% —cot-— 0.

Use Newton’s method to find # to 8 significant decimal places.

Show that each of the following equations has a unique solution in the
given interval, and use Newton’s method to find it to 5 significant decimal
places.

4. 2x—tanx=0; 7<x<37/2 5. 3—x+1isinx=0; I<x<l
6. Inx+(x+1°*=0; 0<x<1 7. 2Vx =cosz2£; 0<x<l
8 (x—1P2-1ex=0; 0<x<l 9. x—e ¥=1; 0<x<2.

1.12 Difference equations, and how to compute
the interest due on your student loans

In Sections 1.13-1.16 we will construct various approximations of the solu-
tion of the initial-value problem dy /dt=f(t,y), (o) =yo. In determining
how good these approximations are, we will be confronted with the follow-
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1 First-order differential equations

ing problem: How large can the numbers E|,..., Ey be if
E,,,<AE,+ B, n=0,1,...,N—1 )

for some positive constants A and B, and E,=0? This is a very difficult
problem since it deals with inequalities, rather than equalities. Fortunately,
though, we can convert the problem of solving the inequalities (1) into the
simpler problem of solving a system of equalities. This is the content of the
following lemma.

Lemma 1. Let E,,..., Ey satisfy the inequalities
E, ,<AE,+ B, E,=0
for some positive constants A and B. Then, E, is less than or equal to y,,
where

Yne1=Ay,+ B, Yo=0. @)

PrOOF. We prove Lemma 1 by induction on n. To this end, observe that
Lemma 1 is obviously true for n=0. Next, we assume that Lemma 1 is true
for n=j. We must show that Lemma 1 is also true for n=j+1. That is to
say, we must prove that E;< y; implies E;, < y;,;. But this follows im-
mediately, for if E; < y; then

E \<AE+B<Ay,+B=y;,,.

By induction, therefore, E, < y,, n=0,1,...,N. O

Our next task is to solve Equation (2), which is often referred to as a dif-
ference equation. We will accomplish this in two steps. First we will solve
the “simple” difference equation

Yns1=Vut B,  Yo=)o 3)

Then we will reduce the difference equation (2) to the difference equation
(3) by a clever change of variables.
Equation (3) is trivial to solve. Observe that

Y1—=Yo =B,
Y=y1 =B

Yn-1—Vn-2=B,_;
yn—yn—1=Bn—1‘

Adding these equations gives

= Vn-0)Ft D1 Va2)+ .+ (11— ¥o)=By+ B+ ...+ B,_,.

Hence,
n—1
Yu=Yot Byt ...+ B,_=y,+ 2 Bj
Jj=0

92



1.12 Difference equations

Next, we reduce the difference equation (2) to the simpler equation (3)
in the following clever manner. Let

Yn

zn=ﬁ’ n=0,1,...,N.
Then, z,,,=y,,,/A"*". Buty,, = Ay,+ B. Consequently,
Yn B B
Z”*1=F An+l =z”+An+l'
Therefore,
1 n
n—1 1'—(—)
A
it 2 e | T
A
e B (LY
_y°+A—1[1 (A)]
and
yn=Anzn=AnyO+ l(A"—l) (4)

Finally, returning to the inequalities (1), we see that

B
<
E, A

n

-1), n=1,2,.,N. (5)

While collecting material for this book, this author was approached by a
colleague with the following problem. He had just received a bill from the
bank for the first payment on his wife’s student loan. This loan was to be
repaid in 10 years in 120 equal monthly installments. According to his
rough estimate, the bank was overcharging him by at least 20%. Before
confronting the bank’s officers, though, he wanted to compute exactly the
monthly payments due on this loan.

This problem can be put in the following more general framework.
Suppose that P dollars are borrowed from a bank at an annual interest rate
of R%. This loan is to be repaid in n years in equal monthly installments of
x dollars. Find x.

Our first step in solving this problem is to compute the interest due on
the loan. To this end observe that the interest /, owed when the first pay-
ment is due is I, =(r/12)P, where r=R/100. The principal outstanding
during the second month of the loan is (x — I,) less than the principal out-
standing during the first month. Hence, the interest I, owed during the sec-
ond month of the loan is

r
L=1,~ 55 (x=1)).
Similarly, the interest /;,, owed during the (j+ I)st month is
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b e 1)=(1 4 e ®

where /; is the interest owed during the jth month.
Equation (6) is a difference equation for the numbers

I,= P Iy 15,

12

Its solution (see Exercise 4) is

= gP( ) (e )]

Hence, the total amount of interest paid on the loan is

12n
I=L+ L+ .. +1,,=>1

~ 37 2 (1% 75) '+ 12nx O oy
Now,
3 r 12 r\!2"
,-=1(1+12) =T[(1+12) ‘1]
Therefore,

1=P[(1+E)12"—1]+12 x—l—il[(l+ﬁ)m—l]

= 12nx - P+P(1+E)12"—127"[(1+ -’—)12"—1}.

But, 12nx — P must equal I, since 12nx is the amount of money paid the
bank and P was the principal loaned. Consequently,

P(1+E)12"—l2;2‘-[(1+ﬁ)lz"—1]=0

and this equation implies that

12n
L p(1+L
12 (1+ 12) . .

(1+1_r2)'2"_1

Epilog. Using Equation (7), this author computed x for his wife’s and
his colleague’s wife’s student loans. In both cases the bank was right—to
the penny.
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EXERCISES

10.

. Solve the difference equation y,, = —7y,+2,yo=1.
. Findy37 ifyn+l=3yn+ l,yo=0, n=0, 1,...,36.
. Estimate the numbers Ey, E|,...,Ey if E4=0 and

(@) E,,,<3E,+1,n=0,1,...,N—1;
(b) E, .1 <2E,+2,n=0,1,...,N—1.

. (a) Show that the transformation y;=I;,, transforms the difference equation

J
1,.+1=(1+ ﬁ)lj— 7%  h={zP
into the difference equation

r r r
yj+|=(l+ ﬁ)y,-— 7% =7k

(b) Use Equation (4) to find y;_, =1,

. Solve the difference equation y,,, =a,y,+b,, y,=a. Hint: Set z, =y, and

z,=y,/a,...a,_, for n > 2. Observe that

Yn+1 _ QnYp + bn
a...a, ay...a, a...a,

Zn+1=

Hence, conclude that z,=z,+2}Z1b;/a,...q;

. Solve the difference equation y,,;—ny,=1—n, y,=2.
. Find y,s if y,=1and (n+1)y,,,—ny,=2", n=1,...,24.

. A student borrows P dollars at an annual interest rate of R%. This loan is to be

repayed in n years in equal monthly installments of x dollars. Find x if
(a) P=4250, R=3, and n=5;
(b) P=5000, R=7, and n=10.

. A home buyer takes out a $30,000 mortgage at an annual interest rate of 9%.

This loan is to be repaid over 20 years in 240 equal monthly installments of x
dollars.

(a) Compute x.

(b) Find x if the annual interest rate is 10%.

The quantity supplied of some commodity in a given week is obviously an in-
creasing function of its price the previous week, while the quantity demanded
in a given week is a function of its current price. Let S; and D; denote, respec-
tively, the quantities supplied and demanded in the jth week, and let P; denote
the price of the commodity in the jth week. We assume that there exist positive
constants a, b, and ¢ such that

S;=aP;_; and D,=b—cP,
(a) Show that P,=b/(a+c)+(—a/c)/(Py—b/(a+c)), if supply always
equals demand.
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(b) Show that P; approaches b/(a+ c) as j approaches infinity if a/c < 1.

(c) Show that P=b5/(a+ c) represents an equilibrium situation. That is to say,
if supply always equals demand, and if the price ever reaches the level
b/(a+ c), then it will always remain at that level.

1.13 Numerical approximations; Euler’s method

In Section 1.9 we showed that it is not possible, in general, to solve the ini-
tial-value problem

Pt v =re 1)

Therefore, in order that differential equations have any practical value for
us, we must devise ways of obtaining accurate approximations of the solu-
tion y () of (1). In Sections 1.13-1.16 we will derive algorithms, which can
be implemented on a digital computer, for obtaining accurate approxima-
tions of y (¢).

Now, a computer obviously cannot approximate a function on an entire
interval £, < ¢ <ty + a since this would require an infinite amount of infor-
mation. At best it can compute approximate values y,,...,yy of y(¢) at a
finite number of points ¢,,¢,,...,¢y. However, this is sufficient for our pur-
pose since we can use the numbers y,,...,yy to obtain an accurate ap-
proximation of y(¢) on the entire interval 7,< ¢ < f,+ a. To wit, let y(¢) be
the function whose graph on each interval [#,¢, ] is the straight line con-
necting the points (4,y,) and (¢, ,,; ) (see Figure 1). We can express y(f)
analytically by the equation

. 1
y(t)=yj+z(t-tj)(yj+l—yj)’ A YAY/TSE

Figure 1. Comparison of y(¢) and y(¢)
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If y(¢) is close to y(¢) at r=1; that is, if y; is close to y(#), and if 4, is
close to #;, then y(7) is close to y(¢) on the entire interval £, < < ;. This
follows immediately from the continuity of both y(¢) and y (7). Thus, we
need only devise schemes for obtaining accurate approximations of y(¢) at
a discrete number of points ¢,,...,7y in the interval 7, < ¢ < ¢, + a. For sim-
plicity, we will require that the points ¢,,...,ty be equally spaced. This is
achieved by cheosing a large integer N and setting ¢, =t,+ k(a/N), k=
1,...,N. Alternately, we may write ¢, ,=t,+h where h=a/N.

Now the only thing we know about y () is that it satisfies a certain dif-
ferential equation, and that its value at t=1¢, is y,. We will use this infor-
mation to compute an approximate value y, of y at t=t¢,=ty+ h. Then, we
will use this approximate value y, to compute an approximate value y, of y
at t=t,=t,+ h, and so on. In order to accomplish this we must find a the-
orem which enables us to compute the value of y at t=1¢, +h from the
knowledge of y at ¢=1r,. This theorem, of course, is Taylor’s Theorem,
which states that

d(t)  p2 d()
y(t+h)=y(t,)+h 7 +ﬁ p +

)]

Thus, if we know the value of y and its derivatives at t=1,, then we can
compute the value of y at t=1,+ h. Now, y(¢) satisfies the initial-value
problem (1). Hence, its derivative, when evaluated at =, must equal
f(t.y(8)). Moreover, by repeated use of the chain rule of partial dif-
ferentiation (see Appendix A), we can evaluate

dtgtk) [g{ +f3, X ]( 1y ()

and all other higher-order derivatives of y(f) at t=1,. Hence, we can re-
write (2) in the form

Yt =y(t)+ hf(tk’y(tk))
|+ )+ ©)

+ —_
The simplest approximation of y(#,,,) is obtained by truncating the
Taylor series (3) after the second term. This gives rise to the numerical
scheme

=yothf(toyo)s  y2=yi+h(t,)1)s
and, in general,

Vi1 =Vt W (Geoyi),  yo=y() 4
Notice how we use the initial-value y, and the fact that y(¢) satisfies the
differential equation dy /dt=f(¢,y) to compute an approximate value y, of
y(?) at t=1,. Then, we use this approximate value y, to compute an ap-
proximate value y, of y(f) at t=t¢,, and so on.
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1 First-order differential equations

Equation (4) is known as Euler’s scheme. It is the simplest numerical
scheme for obtaining approximate values y,,...,yy of the solution y(#) at
times ¢,,...,y. Of course, it is also the least accurate scheme, since we have
only retained two terms in the Taylor series expansion for y(z). As we shall
see shortly, Euler’s scheme is not accurate enough to use in many prob-
lems. However, it is an excellent introduction to the more complicated
schemes that will follow.

Example 1. Let y(7) be the solution of the initial-value problem

d/di=1+(y=1),  y(0)=j3.

Use Euler’s scheme to compute approximate values y,,...,yy of y(f) at the
points 1,=1/N,t,=2/N,....ty=1.
Solution. Euler’s scheme for this problem is

Vier=ye B[ 1+ (= 1)), k=0,1,.,N—1, h=1/N

with y, = . Sample Pascal and Fortran programs to compute y, ..., yy are
given below. These programs, as well as all subsequent programs, have
variable values for #,, yo, a, and N, so that they may also be used to solve
the more general initial-value problem dy/dt=1+(y — t)?, y(t5) =y, on
any desired interval. Moreover, these same programs work even if we
change the differential equation; if we change the function f(¢,y) then we
need only change line 12 in the Pascal program (and line 11 in the C program)
and the expressions for Y(1) and Y (K) in Section B of the Fortran program.

Pascal Program
Program Euler (input, output);

var
T, Y: array[0..999] of real;
a, h: real;
k, N: integer;

begin
readIn(T[0], Y[0], a,N);
h:=a/N;
page;
fork:=0to N—1do
begin
Tlk+1]:=T[Kk] +h;
YIk+1]:=Y[K]+h« (14 (Y[k] = T[K]) « (Y[K] = T[K]));
end;
writeln(‘T":4,Y’:16);
for k :=0to N do
writeIn(T[k]:10:7,* ":2, Y[k]:16:9);
end.
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Fortran Program

DIMENSION T(1000), Y(1000)
READ (5,10) TO, YO, A,N
FORMAT (3F20.8, I5)
H=A/N

T(1)=TO+H
Y(1)=YO+H*(1+(YO—TO)* *2)
D020 K=2,N

TK)=T(K—-1)+H
YK)=YK—-1)+H=*(1+(Y(K-1)
—T(K—=1))* x2)

CONTINUE

WRITE (6,30) T0, Y0, (T(J), Y(J), J=1,N)
FORMAT (1H1,3X, 1HT, 4X, 1HY, /(1H, 1X,
F10.7,2X,F20.9/))

CALL EXIT

END

See also C Program 4 in Appendix C for a sample C program.
Table 1 below gives the results of these computations for a=1, N=10, ¢,=
0, and y,=1. All of these computations, and all subsequent computations,
were carried out on an IBM 360 computer using 16 decimal places ac-
curacy. The results have been rounded to 8 significant decimal places.

Table 1

t y t y

0 0.5 0.6 1.29810115
0.1 0.625 0.7 1.44683567
0.2 0.7525625 0.8 1.60261202
03 0.88309503 0.9 1.76703063
0.4 1.01709501 1 1.94220484
0.5 1.15517564

The exact solution of this initial-value problem (see Exercise 7) is

y(@O)=t+1/2-1).

Thus, the error we make in approximating the value of the solution at =1
by y,, is approximately 0.06, since y (1)=2. If we run this program for N =
20 and N =40, we obtain that y,,=1.96852339 and y,,=1.9835109. Hence,
the error we make in approximating y(1) by y,, is already less than 0.02.
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1 First-order differential equations

EXERCISES

Using Euler’s method with step size £=0.1, determine an approximate
value of the solution at #=1 for each of the initial-value problems 1-5. Re-
peat these computations with £=0.025 and compare the results with the
given value of the solution.

L %=1+t—y, »©)=0; (y(H)=1)
2 2 22y, y©=2 (=26

3. Y1 y0)=0; (D=1

dt

4 dy-—-t vyt 0)=0; =In(1+12

. —Jt'*'e 1+t2’ y( )"' ’(y(t)'—n( t))
dy y?

5 = =—14+2t+ , YO=1; (y()=1+¢
= QT p y©@=1; (y(9 ?)

6. Using Euler’s method with k=« /40, determine an approximate value of the
solution of the initial-value problem
%=2seczt—(l+y2), y(0)=0

at == /4. Repeat these computations with A= x/160 and compare the results
with the number one which is the value of the solution y(f)=tant at t==/4.

7. (a) Show that the substitution y = ¢ + z reduces the initial-value problem y’'=1+
(y — 1%, y(0)=0.5 to the simpler initial-value problem z’= 22, z(0)=0.5.
(b) Show that z(#)=1/(2—1t). Hence, y()=t+1/(2—1).

1.13.1 Error analysis for Euler’s method

One of the nice features of Euler’s method is that it is relatively simple to
estimate the error we make in approximating y(t,) by y,. Unfortunately,
though, we must make the severe restriction that ¢,,...,¢y do not exceed ¢,
+ a, where a is the number defined in the existence—uniqueness theorem of
Section 1.10. More precisely, let a and b be two positive numbers and
assume that the functions f, d9f/d¢, and df/dy are defined and continuous
in the rectangle 7, < 1< ty+a, yo— b < y < yo,+ b. We will denote this rect-
angle by R. Let M be the maximum value of | f(¢,y)| for (,y) in R, and set
a=min(a,b/M). We will determine the error committed in approximating
y(t) by y,, for £, < 15+ a.

To this end observe that the numbers yg,y,,...,yy satisfy the difference
equation

Ve =t (Goye),  k=0,1,...,N—1 (1)
while the numbers y(1,),y(1)),...,y(ty) satisfy the difference equation
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of  of
5 e

where §, is some number between #, and 7, ;. Equation (2) follows from
the identity

Pt =9 (1) + A (o () +

dy y_
d12 at ay
and the fact that X
y(t) s d’y(r)

y(t+h)=y()+h +5 e

for some number 7 between ¢ and ¢+ h. Subtracting Equation (1) from
Equation (2) gives

Y (e 1) = Yiar=y () =yt h[ £ (6.9 (1)) = f (4 ]

2 9f of
AT )
Next, observe that P (tom)
),
F by (1) =S (o2 = —5 = [ (%) =2
where 7, is some number between y(#,) and y,. Consequently,
f (4>
[y (eset) = Vel <1y (8 =il + (’; ) Ly (%) =l
[ of
+ 7“5 +f5; &y ()|

In order to proceed further, we must obtain estimates of the quantities
(3f (4,m))/ 3y and [(3f/30)+ f(8f/ )1(§.y (&))- To this end observe that
the points (¢, (&) and (#,y,) all lie in the rectangle R. (It was shown in
Section 1.10 that the points (§,y(£,)) lie in R. In addition, a simple induc-
tion argument (see Exercise 9) shows that the points (#.,y,) all lie in R.)
Consequently, the points (#,,7,) must also lie in R. Let L and D be two
positive numbers such that

of
-5;<L

of  Lof
o +f__

(s, y) in R
and

max < D.

(ty)inR

Such numbers always exist if f, 9f/0¢, and 9f/dy are continuous in R.
Then,

Dh?
[Y (1) = Vel <1V (8) =il + ALy (1) =i | + - 3)
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1 First-order differential equations

Now, set E, =|y(%)—»l, k=0,1,...,N. The number E, is the error we
make at the kth step in approximating y(#,) by y,. From (3)

E < Dh? _
e S(HRDE + ==, k=01,..,N-1. 4)

Moreover, Ey=0 since y(ty)=y,. Thus, the numbers Ey,E,,..., Ey satisfy
the set of inequalities

E . <AE,+ B, E,=0
with 4 =1+ hL and B= Dh?/2. Consequently, (see Section 1.12)

E< 2o (4 =)= 24 (14 ALy ~1). (5)

A

We can also obtain an estimate for E, that is independent of k. Observe
that 1+ AL < L. This follows from the fact that

(hL)* (ALY’
21 T
= (1+ hL)+ “something positive”.

e"=1+hL+

Therefore,

Dh k Dh
E,<Sp[(e™) —1]=57 [ ~1].

Finally, since kk < a, we see that

Dh| 4
E<3plet=1],  k=L..,N. (6)

Equation (6) says that the error we make in approximating the solution
y(?) at time t=1, by y, is at most a fixed constant times A. This suggests, as
a rule of thumb, that our error should decrease by approximately 3 if we
decrease & by % We can verify this directly in Example 1 of the previous
section where our error at t=1 for A=0.1, 0.05, and 0.025 is 0.058, 0.032,
and 0.017 respectively.

Example 1. Let y () be the solution of the initial-value problem

dy 2+ y?
E_—. 2 ) y(0)=0.

(a) Show that y(r) exists at least for 0< #< 1, and that in this interval, —1
<y(m<L

(b) Let N be a large positive integer. Set up Euler’s scheme to find ap-
proximate values of y at the points t,=k/N, k=0,1,...,N.

(c) Determine a step size A=1/N so that the error we make in approxi-
mating y (1) by y, does not exceed 0.0001.

Solution. (a) Let R be the rectangle 0<¢<1, —1< y <1. The maximum
value that (t2+y2)/2 achieves for (#,y) in R is 1. Hence, by the exist-
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1.13 Numerical approximations; Euler’s method

ence-uniqueness theorem of Section 1.10, y(¢) exists at least for
0<t<a=min(1,1)=1,
and in this interval, ~1< y<1.

L+t ) 1

k 2
® yk+1=yk+”(—z‘“ et x| () +2

with y,=0. The integer k runs from 0 to N —1.
(c) Let f(t,y)=(>+y?/2, and compute
of _ f o y oo,
5;—-}) and E'l‘fs;—t'f ) (t +y )
From (6), |y(t)— .| <(Dh/2L)(e*—1) where L and D are two positive

numbers such that

max <L
(t,y)in R ,y|

and »
max |t+ = (2+y?)|< D.
y) s R 2( %)
Now, the maximum values of the functions |y| and |¢+(p/2)(2+y?)| for
(t,y) in R are clearly 1 and 2 respectively. Hence,

(1) =y <ZEe=1)=h(e-1).

This implies that the step size 4 should be smaller than 0.0001/(e —1).
Equivalently, N should be larger than (e—1)10*=17,183. Thus, we must

iterate the equation
2

1 k ) 2
= +
Ver1 =Vt 2(17,183)[( 17,183 ) "k
17,183 times to be sure that y(1) is correct to four decimal places.

Example 2. Let y(¢) be the solution of the initial-value problem

- =0+ e, y(0)=1
(a) Show that y(¢) exists at least for 0< ¢ < 1, and that in this interval, —1
<y<3.

(b) Let N be a large positive integer. Set up Euler’s scheme to find ap-
proximate values of y(?) at the points t, =k /N, k=0,1,...,N.

(c) Determine a step size 4 so that the error we make in approximating
y(t,) by y, does not exceed 0.0001.

Solution.

(a) Let R be the rectangle 0< 7 < 1, |y — 1| <2. The maximum value that #?
+e¢~”" achieves for (t,y) in R is 2. Hence, y(¢) exists at least for 0<¢<
min(1,2/2)=1, and in this interval, —1< y <3.
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1 First-order differential equations

(0) Yesr =yt h(t2+ e )=y, +(1/N)(k/N) +e ] with yo=1. The
integer k runs from 0 to N-—-1
(c) Let f(t,y)=t*+ ¢ and compute

of : of of e

= = -y - = — Y b4

™ 2ye™", and o +f % 21 -2y(P+e e,

From (6), |y(#)—y.| <(Dh/2L)e™—1) where L and D are two positive
numbers such that

max |—2ye ™’ |< L
(t,y)inR

and

max [2t~2y(2+e " )e | < D.
(t,y)in R

Now, it is easily seen that the maximum value of |2ye _yzl for —1<y<3is
V2 /e . Thus, we take L=V 2/e . Unfortunately, though, it is extremely
difficult to compute the maximum value of the function
12t =2y (2 + e )e ™|
for (¢,y) in R. However, we can still find an acceptable value D by observ-
ing that for (¢,y) in R,
max|2f —2v (2 + e ™”")e | < max|2¢| + max|2y (2 + e ¥ )e ™|

< max|2¢| + max|2ye 7’| X max(s*+ e ")
=2+2V2/e =2(1+ V2/e).
Hence, we may choose D=2(1+ m ). Consequently,
2(1+V2/e Yn[ V¥ —1]
2V2/e '

This implies that the step size A must be smaller than

V2/e  _0.0001
1+V2/e oV2/e

Examples 1 and 2 show that Euler’s method is not very accurate since
approximately 20,000 iterations are required to achieve an accuracy of four
decimal places. One obvious disadvantage of a scheme which requires so
many iterations is the cost. The going rate for computer usage at present is
about $1200.00 per hour. A second, and much more serious disadvantage,
is that y, may be very far away from y(#,) if N is exceptionally large. To
wit, a digital computer can never perform a computation exactly since it
only retains a finite number of decimal places. Consequently, every time
we perform an arithmetic operation on the computer, we must introduce a

|y () =yl <
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1.13  Numerical approximations; Euler’s method

“round off” error. This error, of course, is small. However, if we perform
too many operations then the accumulated round off error may become so
large as to make our results meaningless. Exercise 8 gives an illustration of
this for Euler’s method.

EXERCISES

1. Determine an upper bound on the error we make in using Euler’s method with
step size A to find an approximate value of the solution of the initial-value prob-
lem

dy 2+y? _

x- " y(©0)=1
at any point ¢ in the interval [0, ]. Hint: Let R be the rectangle 0<#<1,0< y <
2.

2. Determine an upper bound on the error we make in using Euler’s method with
step size & to find an approximate value of the solution of the initial-value prob-
lem

&y o, -
Z =15 y(©0)=0

at any point ¢ in the interval [0, 1]. Hint: Let R be the rectangle 0< <1, —1< y
<L

3. Determine an upper bound on the error we make in using Euler’s method with
step size A to find an approximate value of the solution of the initial-value prob-
lem

%=t+e’, y(0)=0

at any point ¢ in the interval [0,1/(e+ 1)]. Hint: Let R be the rectangle 0 << 1,
-1<y<l

4. Determine a suitable value of h so that the error we make in using Euler’s
method with step size 4 to find an approximate value of the solution of the ini-
tial-value problem

&
= y(0)=0

at any point ¢ in the interval [0,1/¢] is at most 0.0001. Hint: Let R be the rect-
angle 0<r<1, —1<y<l.

5. Determine a suitable value of 4 so that the error we make in using Euler’s
method with step size 4 to find an approximate value of the solution of the ini-
tial-value problem

dy

Z = P+tar’y,  y(0)=0

at any point ¢ in the interval [0, 1] is at most 0.00001. Hinz: Let R be the rectan-
gle0<1<}, —n/d< y<n/4
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! First-order differential equations

6. Determine a suitable value of 4 so that the error we make in using Euler’s
method with step size A to find an approximate value of the solution of the ini-
tial-value problem

&y 1

@~ Traey 7O

at any point ¢ in the interval [0, 1} is at most 0.0001. Hint: Let R be the rectangle
0<t<l1, —1<y<L.

7. Let y(t) be the solution of the initial-value problem

b ot y@=0.

Suppose that | f(1,)| <1, |8f/dy| < 1, and |(3f/37) +f(3f/ dy)| <2 in the rectan-
gle 0< <1, —1< y <1. When the Euler scheme

1
Yer1=Vi+hf (4,34, h= N

is used with N=10, the value of ys is —0.15[(3)°—1], and the value of yg is
0.12{(11)6— 1]. Prove that y(¢) is zero at least once in the interval (4, 2).

8. Let y () be the solution of the initial-value problem

y/=f(t’y)’ y(t0)=y0'
Euler’s method for finding approximate values of y(f) is yi.1=yr + A (bes Vi)
However, the quantity y, + Af(%,y,) is never computed exactly: we always in-
troduce an error ¢ with || <e. That is to say, the computer computes numbers
Y1:Y2-.., such that

V=Vt b (450 + &
with yo=y,. Suppose that |3f/dy| < L and |(3f/3r)+f(38f/dy)| < D for all ¢ and

y.
(a) Show that

. D
Ep 1=y (tes1) = Pes1| KU+ AL)E, + ?h2+e

(b) Conclude from (a) that

Dh
2t

e[ o5
k

L

|

for kh < a.
(c) Choose A so that the error E, is minimized. Notice that the error E, may be
very large if 4 is very small.

9. Let y,,5,... satisfy the recursion relation

Yiev 1=Vt hf (ho91)-
Let R be the rectangle t, < t < fy+a,y,— b < y < yo+ b, and assume that | f(z,y)|
< M for (t,y) in R. Finally, let « =min(a,b/M).
(a) Prove that | y;— ol < jhM, as long as jh < a. Hint: Use induction.
(b) Conclude from (a) that the points (4,y,) all lie in R as long as j < a/h.
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1.14 The three term Taylor series method

1.14 The three term Taylor series method

Euler’s method was derived by truncating the Taylor series

y(tes) =y () + 1 (1,5 (1))

53 )+ (n

after the second term. The most obvious way of obtaining better numerical
schemes is to retain more terms in Equation (1). If we truncate this Taylor
series after three terms then we obtain the numerical scheme

[ of  of
Yier1=ViHhf (4yi) + 2 { ot +f5 ](tk’yk)’ k=0,...,.N=1 (2)

with yo=y(t).

Equation (2) is called the three term Taylor series method. 1t is obviously
more accurate than Euler’s method. Hence, for fixed A, we would expect
that the numbers y, generated by Equation (2) are better approximations
of y(#,) than the numbers y, generated by Euler’s scheme. This is indeed
the case, for it can be shown that | y(f,)—y,| is proportional to > whereas
the error we make using Euler’s method is only proportional to h. The
quantity A% is much less than A if 4 is very small. Thus, the three term
Taylor series method is a significant improvement over Euler’s method.

Example 1. Let y(¢) be the solution of the initial-value problem

2 —1+0-0% »O=1.

Use the three term Taylor series method to compute approximate values of
»(?) at the points t,=k/N, k=1,...,N.

Solution. Let f(t,y)=1+(y —t)%. Then,

%+f—§)f7=—2(y—t)+2(y—t)[l+(y—t)2]=2(y—t)3.

Hence, the three term Taylor series scheme is

)’k+1=)’k+h[1+()’k_’k)2] +h(ye— )’

with h = 1/N and y, = 1. The integer k runs from 0 to N — 1. Sample Pascal
and Fortran programs to compute y,,...,yy are given below. Again, these
programs have variable values for ¢, 4, @, and N.
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1 First-order differential equations

Pascal Program

Program Taylor (input, output);

var
T, Y: array[0..999] of real;
a, h, Temp: real;
k, N: integer;

begin
readin(T[0], Y[0], a, N);
h:=a/N;
page;
fork:=0to N—1do
begin
Temp :=Y([k]—Ti{k];
Tik+1]:=T[k]+h;
Y[k+1]:=Y[k]+h+*(14+Temp +» Temp)
+h+h+*Temp+*Temp » Temp;
end;
writeln(‘T":4, 'Y':16);
fork:=0to Ndo
writeIn(T[k]:10:7,* ’:2, Y[k]:16:9);
end.

Fortran Program

Replace Section B of the Fortran program in Section 1.13 by the follow-
ing:

T(1)=TO+H
D2Y =Hx*(YO—TO)* +3

Y(1)=Y0+H=(D2Y +1+(YO—T0)+ *2)

D020 K=2,N

T(K)=T(K—1)+H

D2Y =Hx*(Y(K—1)=T(K—1))* +3
Y(K)=Y(K—1)+H*(D2Y+1+(Y(K—1)=T(K—1))* +2)
20 CONTINUE

See also C Program 5 in Appendix C for a sample C program.
Table 1 below shows the results of these computations for a=1, N =10,
t,=0, and y,=0.5.

Now Euler’s method with N =10 predicted a value of 1.9422 for y(1). No-
tice how much closer the number 1.9957 is to the correct value 2. If we run
this program for N=20 and N =40, we obtain that y,,=1.99884247 and
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1.15 An improved Euler method

Table 1

t y t y

0 0.5 0.6 1.31331931
0.1 0.62625 0.7 1.4678313
0.2 0.7554013 0.8 1.63131465
0.3 0.88796161 0.9 1.80616814
0.4 1.02456407 1 1.99572313
0.5 1.1660084

Yao=1.99969915. These numbers are also much more accurate than the val-
ues 1.96852339 and 1.9835109 predicted by Euler’s method.

EXERCISES

Using the three term Taylor series method with 2=0.1, determine an ap-
proximate value of the solution at =1 for each of the initial-value prob-
lems 1-5. Repeat these computations with #=0.025 and compare the re-
sults with the given value of the solution.

cdy/di=1+t—y, y(O)=0; (y()=1)

- dy/di=2ty, y(0)=2 (y(1)=2¢")

L dy/dt=1+y2—2, y(0)=0; (y()=¢)

L dy/di=te™>+1/(14 1), y(0)=0; (y()=In(1+r?)
dy/dt=~1+2t+p2/(1+ 122 yO)=1; ((H)=1+1)

N N AW N e

. Using the three term Taylor series method with =7 /40, determine an ap-
proximate value of the solution of the initial-value problem
%=2seczt—(l+y2), y(0)=0

at t=m/4. Repeat these computations with A= /160 and compare the results
with the number one which is the value of the solution y(f)=tant at t==/4.

1.15 An improved Euler method

The three term Taylor series method is a significant improvement over
Euler’s method. However, it has the serious disadvantage of requiring us to
compute partial derivatives of f(z,y), and this can be quite difficult if the
function f(¢,y) is fairly complicated. For this reason we would like to de-
rive numerical schemes which do not require us to compute partial deriva-
tives of f(¢,y). One approach to this problem is to integrate both sides of
the differential equation y’=f(¢,y) between ¢, and 7, + A to obtain that

» (b)) =y )+ [ “R iy (1) de. (1)
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1 First-order differential equations

This reduces the problem of finding an approximate value of y(¢, ) to the
much simpler problem of approximating the area under the curve f(z,y(¢))
between ¢, and £, + h. A crude approximation of this area is Af(#,,y (%)),
which is the area of the rectangle R in Figure la. This gives rise to the
numerical scheme
Vir1=Yet hf (475)

which, of course, is Euler’s method.

A much better approximation of this area is

g[f(tk,y(tk))+f(lk+1,)’(tk+1))]

which is the area of the trapezoid T in Figure 1b. This gives rise to the
numerical scheme

yk+l=yk+%[f(tk:yk)+f(tk+15yk+l)]' (2)

However, we cannot use this scheme to determine y, , ; from y, since y,,,
also appears on the right-hand side of (2). A very clever way of overcoming
this difficulty is to replace y, ., in the right-hand side of (2) by the value
Yi + hf (4, »,) predicted for it by Euler’s method. This gives rise to the
numerical scheme

Yee1=0t ﬁz‘ [f(tk!yk) +f(te+hy+ hf(tk’yk))]’ yo=y(tp). (3)

Equation (3) is known as the improved Euler method. It can be shown
that | y(#,)—y,| is at most a fixed constant times 42. Hence, the improved
Euler method gives us the same accuracy as the three term Taylor series
method without requiring us to compute partial derivatives.

f(\t,y(t)) | flt,y(t) ~
| P |
! |
- — = = __l
| u | T |
| R I | |
| | l |
| | l |
t t
oo W R e
Figure 1

Example 1. Let y(¢) be the solution of the initial-value problem

N —

dy 2
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1.15 An improved Euler method

Use the improved Euler method to compute approximate values of y () at
the points t,=k/N, k=1,...,N.
Solution. The improved Euler scheme for this problem is

2
J’k+1=)’k+g{1+()’k_tk)2+1+[Yk"‘h(l'*'(Yk_tk)z)“’kﬂ] }

with h = 1/N and y, = 0.5. The integer k runs from 0 to N — 1. Sample Pascal
and Fortran programs to compute y,,...,y, are given below. Again, these
programs have variable values for #y, y,, a, and N.

Pascal Program
Program Improved (input, output);

var
T, Y: array[0..999] of real;
a, h, R: real;
k, N: integer;

begin
readin(T[0], Y[O], a, N);
h:=a/N;
page;
fork:=0to N—1do
begin
R:=1+(Y[K]—T[k]) = (Y [K] = T[K]);
Tlk+1]:=T[k] +h;
Y[k+1]:=Y[k]+(h/2) » (R+1
+(Y[K]l+h+«R—T[k+ 1))« (Y[k] +h=R—T[k+1]));
end;
writeln(‘T’":4, 'Y’:16);
for k :=0to N do
writeln(T[k]:10:7,‘ ’:2,Y[k]:16:9);
end.

Fortran Program

Replace Section B of the Fortran program in Example 1 of Section 1.13 by
the following:

T(1)=TO+H
R=1+(YO—T0)* 2
Y(1)=Y0+(H/2)*(R+1+(YO+(H+R)—T(1))+ +2)

D020 K=2,N

T(K)=T(K—1)+H

R=1+(Y(K—1)=T(K—1))* +2
Y(K)=Y(K—1)+(H/2)*(R+1+(Y(K—1)+(H*R)— T(K)) * +2)
20 | | CONTINUE
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1 First-order differential equations

See also C Program 6 in Appendix C for a sample C program.

Table 1 below shows the results of these computations for a=1, N=10,
to=0, and y,=0.5. If we run this program for N =20 and N =40 we obtain
that y,o=1.99939944 and y,,=1.99984675. Hence the values y,,, y,, and
Y40 computed by the improved Euler method are even closer to the correct
value 2 than the corresponding values 1.99572313, 1.99884246, and
1.99969915 computed by the three term Taylor series method.

Table 1

t y t Yy

0 0.5 0.6 1.31377361
0.1 0.62628125 0.7 1.46848715
0.2 0.75547445 0.8 1.63225727
03 0.88809117 0.9 1.80752701
0.4 1.02477002 1 1.99770114
0.5 1.16631867

EXERCISES

Using the improved Euler method with 2=0.1, determine an approximate
value of the solution at r=1 for each of the initial-value problems 1-5. Re-
peat these computations with 2=0.025 and compare the results with the
given value of the solution.

Ldy/di=1+t—-y, y0)=0; (y(=1)

2 &/di=2y, yO)=2; (y())=2¢")

3. dy/dt=1+y*~1% y(0)=0; (y(n=1)

4. dy/di=te " +1/(1+1), y(0)=0; (y()=In(l1+1?)

5. dy/dt=—1+2t+y2/(1+ 3% y(O)=1; (y()=1+1})

6. Using the improved Euler method with A= 7 /40, determine an approximate

value of the solution of the initial-value problem

dy

& =2sec?r—(1+y?), y(0)=0

at t=m /4. Repeat these computations with A=x/160 and compare the results
with the number one which is the value of the solution y(t)=tant at t=x/4.

1.16 The Runge-Kutta method

We now present, without proof, a very powerful scheme which was devel-
oped around 1900 by the mathematicians Runge and Kutta. Because of its
simplicity and great accuracy, the Runge-Kutta method is still one of the
most widely used numerical schemes for solving differential equations. It is
defined by the equation
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1.16 The Runge-Kutta method

h
Yisr=t g [ Ly +2L,,+2L, 3+ L, 4],  k=0,1,...,N—1
where y,=y(t,) and

Ly 1 =f(tey1)s Lk,2=f(tk +3hy+ %th,x)
Ly s =f(tk +3hy+ %th,z), Ly, s=f(t+h.y,+hL3).

This formula involves a weighted average of values of f(¢,y) taken at diffe-
rent points. Hence the sum §[L, ,+2L, ,+2L, 3+ L, 4] can be interpreted
as an average slope It can be shown that the error |y (%) —y,| is at most a
fixed constant times 4% Thus, the Runge-Kutta method is much more ac-
curate than Euler’s method, the three term Taylor series method and the
improved Euler method.

Example 1. Let y(#) be the solution of the initial-value problem

St - 0=}

Use the Runge-Kutta method to find approximate values y,,...,y, of y at
the points t,=k/N, k=1,...,N.

Solution. Sample Pascal and Fortran programs to compute y,,..., yy by the
Runge-Kutta method are given below. These programs differ from our
previous programs in that they do not compute y, separately. Rather, they
compute y, in the same “loop” as they compute y,,...,yy. This is accom-
plished by relabeling the numbers ¢, and y, as ¢, and y, respectively.

Pascal Program

Program Runge_Kutta (input, output);

var
T, Y: array[0..999] of real;
a, h, LK1, LK2, LK3, LK4: real;
k, N: integer;

begin
readin(T[0], Y[0], a, N);
h:=a/N;
page;
fork:=0to N—1do
begin
Tk+1):=T[k]+h;
LK1 : =1+ (Y[K]—=T[Kk]) = (Y[K] = T[K]);
LK2:=1+4+((Y[K]+ (h/2) » LK1) — (T[K] + h/2))
*((Y[K] +(h/2)  LK1) — (T [K] + h/2));
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LK3:=14((Y[K] + (h/2) » LK2) — (T[k] + h/2}))
* ((Y[K] + (h/2) » LK2) — (T[k] + h/2));
LK4:=1+((Y[k] +h = LK3)—(T[k] +h))
* ((Y[K] +h = LK3) — (T[k] + h));
Y[k+1]:=Y[k]+ (h/6) + (LK1 +LK4 + 2« (LK2 + LK3));
end;
writeln(‘T":4,'Y’:16);
fork :=0to N do
writeln(T[k]:10:7, " ’:2,Y[k]:16:9);
end.

Fortran Program

DIMENSION T(1000), Y(1000)

READ (5,10) T(1),Y(1),A,N

10 FORMAT (3F20.8, 15)

H=A/N

D020 K=1,N

TK+1)=TK)+H

REAL LK1, LK2, LK3, LK4

LK1 =1 +(Y(K)— T(K)) * *2

LK2=1+((Y(K)+(H/2) *LK1)— (T(K) + H/2)) %2
LK3=1+((Y(K)+(H/2)* LK2)— (T(K) + H/2)) » x2
LK4 =1+ ((Y(K) + H * LK3) — (T(K) + H)) » »2
Y(K+1)=Y(K)+ (H/6) * (LK1 + LK4 + 2 x (LK2 + LK3))
20 | | CONTINUE

NA=N+1

WRITE (6,30) (T(J), Y(J),J=1,NA)

30 FORMAT (1H1,3X, 1HT, 4X, 1HY, /(1H,1X, F10.7,2X,F20.9/))
CALL EXIT

END

See also C Program 7 in Appendix C for a sample C program.
Table 1 below shows the results of these computations for a=1, N=10,
t,=0, and y,=0.5.

Table 1

t y t y

0 0.5 0.6 1.31428555
0.1 0.62631578 0.7 1.4692305
0.2 0.75555536 0.8 1.6333329
0.3 0.88823526 0.9 1.8090902
04 1.02499993 1 1.9999988
0.5 1.16666656

114



1.16 The Runge-Kutta method

Notice how much closer the number y, =1.9999988 computed by the
Runge-Kutta method is to the correct value 2 than the numbers y, =
1.94220484, y,,=1.99572312, and y,,=1.99770114 computed by the Euler,
three term Taylor series and improved Euler methods, respectively. If we
run this program for N=20 and N =40, we obtain that y,,=1.99999992
and y,,=2. Thus, our approximation of y(1) is already correct to eight dec-
imal places when 4 =0.025. Equivalently, we need only choose N >40 to
achieve eight decimal places accuracy.

To put the accuracy of the various schemes into proper perspective, let
us say that we have three different schemes for numerically solving the ini-
tial-value problem dy /dt = f(t,y), y(0)=0 on the interval 0< ¢ < 1, and that
the error we make in using these schemes is 3k, 1142 and 42h* respec-
tively. If our problem is such that we require eight decimal places ac-
curacy, then the step sizes h,, h,, and h; of these three schemes must satisfy
the inequalities 32, <1078, 1142 < 1078, and 42h3 < 108, Hence, the num-
ber of iterations N,, N,, and N; of these three schemes must satisfy the in-
equalities

N, >3x108=300,000,000, N,>V11 X 10%~34,000

and 1/
N, >(42)"/* % 10°~260.

This is a striking example of the difference between the Runge-Kutta
method and the Euler, improved Euler and three term Taylor series
methods.

Remark. It should be noted that we perform four functional evaluations at
each step in the Runge-Kutta method, whereas we only perform one func-
tional evaluation at each step in Euler’s method. Nevertheless, the
Runge-Kutta method still beats the heck out of Euler’s method, the three
term Taylor series method, and the improved Euler method.

EXERCISES

Using the Runge-Kutta method with A=0.1, determine an approximate
value of the solution at =1 for each of the initial-value problems 1-5. Re-
peat these computations with A=0.025 and compare the results with the
given value of the solution.

L dy/dt=1+1—y, y(O=0; (y()=1)
2 dy/di=21, y(O=2; (y(1)=2¢"
3. dy/dt=1+y*~-7, y(0)=0; (y()=1)
4. dy/di=te ™’ +t/(1+1), y(0)=0; (y()=In(1+r?)
5. dy/dt=—1+2t+y?/(1+13?), yO=1; (y(O=1+1)
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1 First-order differential equations

6. Using the Runge-Kutta method with # == /40, determine an approximate value
of the solution of the initial-value problem

D caset-(14y),  yO=0

at t=m/4. Repeat these computations with h==/160 and compare the results
with the number one which is the value of the solution y(f)=tant at t==/4.

1.17 What to do in practice

In this section we discuss some of the practical problems which arise when
we attempt to solve differential equations on the computer. First, and fore-
most, is the problem of estimating the error that we make. It is not too dif-
ficult to show that the error we make using Euler’s method, the three term
Taylor series method, the improved Euler method and the Runge-Kutta
method with step size & is at most c,h, c,h% c3h?, and c,h respectively.
With one exception, though, it is practically impossible to find the con-
stants ¢;, ¢,, ¢5, and ¢,. The one exception is Euler’s method where we can
explicitly estimate (see Section 1.13.1) the error we make in approximating
y(t,) by y,. However, this estimate is not very useful, since it is only valid
for #, sufficiently close to #;,, and we are usually interested in the values of
y at times ¢ much larger than #,. Thus, we usually do not know, a priori,
how small to choose the step size 4 so as to achieve a desired accuracy. We
only know that the approximate values y, that we compute get closer and
closer to y(¢,) as & gets smaller and smaller.

One way of resolving this difficulty is as follows. Using one of the
schemes presented in the previous section, we choose a step size # and
compute numbers y,,...,yy. We then repeat the computations with a step
size h/2 and compare the results. If the changes are greater than we are
willing to accept, then it is necessary to use a smaller step size. We keep
repeating this process until we achieve a desired accuracy. For example,
suppose that we require the solution of the initial-value problem y’=f(¢,y),
y(0)=y, at t=1 to four decimal places accuracy. We choose a step size h
=1/100, say, and compute y,,...,y,o. We then repeat these computations
with A=1/200 and obtain new approximations z,,...,2Zgq. If Y100 a0d Z5p9
agree in their first four decimal places then we take z,4, as our approxima-
tion of y(1).* If y,40 and z,o, do not agree in their first four decimal places,
then we repeat our computations with step size #=1/400.

Example 1. Find the solution of the initial-value problem

*This does not guarantee that z,o, agrees with y(1) to four decimal places. As an added pre-
caution, we might halve the step size again. If the first four decimal places still remain un-
changed, then we can be reasonably certain that z,y, agrees with y (1) to four decimal places.
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dy _ .
—at—=y(1+e )+ e, y(0)=0
at t=1 to four decimal places accuracy.

Solution. We illustrate how to try and solve this problem using Euler’s
method, the three term Taylor series method, the improved Euler method,
and the Runge-Kutta method.

(1) Euler’s method:
Pascal Program

Program Euler (input, output);

var
T, Y: array[0..999] of real;
a, h: real;
k, N: integer,;

begin
readIn(T[0], Y[0], a, N);
h:=a/N;
page;
fork:=0toN—1do
begin
Tlk+1]:=T[k]+h;
Y[k+1]:=Y[K]+h*(Y[K] * (1 +exp(—Y[k])) +exp(T[K]));
end;
writeln(‘N’:4, ‘h’:10, ‘Y[N]':20);
writeln(N:4,‘ :2,h:10:7,° ":2,Y[N]:18:10);

end.
Fortran Program
DIMENSION T(1000), Y(1000)
Section A READ (5,10) T(1),Y(1),A,N,
Read in data 10 FORMAT (3F20.8,15)
L H=A/N
[ D020K=1,N
Section B TK+1)=T(K)+H
Do computations Y(K+1)=Y(K)+H*(Y(K) * (1 + EXP(—Y(K)))
1 + EXP(T(K)))
20 CONTINUE
WRITE (6,30) N,H,Y(N+1)
Section C 30 FORMAT (1H,1X,15,2X,F10.7,4X,F20.9)
Print out CALL EXIT
results L END
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1 First-order differential equations

See also C Program 8 in Appendix C for a sample C program.
Weset A=1, T[0]=0, Y[0]=0(T(1)=Y(1)=0in the Fortran program) and
ran these programs for N =10, 20, 40, 80, 160, 320, and 640. The results of
these computations are given in Table 1. Notice that even with a step size &

Table 1
10 0.1 2.76183168
20 0.05 2.93832741
40 0.025 3.03202759
80 0.0125 3.08034440
160 0.00625 3.10488352
320 0.003125 3.11725009
640 0.0015625 3.12345786

as small as 1/640, we can only guarantee an accuracy of one decimal
place. This points out the limitation of Euler’s method. Since N is so large
already, it is wiser to use a more accurate scheme than to keep choosing
smaller and smaller step sizes & for Euler’s method.

(ii) The three term Taylor series method

Pascal Program

Program Taylor (input, output);

var
T, Y: array[0..999] of real;
a, h, DY1, DY2: real;
k, N: integer;

begin
readin(T[0], Y[O], a, N);
h:=a/N;
page,
fork:=0to N—1do
begin
Tlk+1):=T[k]+h;
DY1:=14+(1-Y[k]) »exp(—Y[kl);
DY2:=Y[k] » (1+exp(—Y[Kk])) + exp(T[Kk]);
Y[k+1]:=Y[k]+h«DY2+(h+h/2) « (exp(T[k]) + DY1+DY2);
end;
writeln(‘N’:4, ‘h’:10, *Y[N]’:20);
writeIn(N:4,* ":2,h:10:7," ":2, Y[N]:18:10);
end.
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Fortran Program

Replace Section B of the previous Fortran program by

D020 K=1,N
T(K+1)=T(K)+H

DY1=1+(1—Y(K))* EXP(— Y(K))

DY2=Y(K)* (1 + EXP(— Y(K))) + EXP(T(K))

Y(K+1)=Y(K) + H*DY2+ (H*H/2) x (EXP(T(K)) + DY1+DY2)
20 CONTINUE

See also C Program 9 in Appendix C for a sample C program.
We set A=1, T[0]=0, and Y[0]=0 (T(1)=0, and Y(1)=0 in the Fortran
program) and ran these programs for N =10, 20, 40, 60, 80, 160, and 320.
The results of these computations are given in Table 2. Observe that y 4,

Table 2
N h YN
10 0.1 3.11727674
20 0.05 3.12645293
40 0.025 3.12885845
80 0.0125 3.12947408
160 0.00625 3.12962979
320 0.003125 3.12966689

and y,,, agree in their first four decimal places. Hence the approximation
y(1)=3.12966689 is correct to four decimal places.

(iii) The improved Euler method
Pascal Program

Program Improved (input, output);

var
T, Y: array[0..999] of real;
a, h, R1, R2: real;
k, N: integer;

begin
readin(T[0], Y[0], a, N);
h:=a/N;
page;
fork:=0to N—1do
begin
Tlk+1]:=T[k]+h;
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R1:=YI[k] » (1+exp(—Y[k])) +exp(T[Kk]);
R2:=(Y[k]+h=R1)*(1+exp(—(Y[k] +h+R1)))+exp(T[k+1]);
Y[k+1]:=Y[k]+ (h/2) » (R1+ R2);
end;
writeln(‘N’:4, ‘h’:10, ‘Y[N]':20),
writeIn(N:4,* ":2,h:10:7," ":2,Y[N]:18:10);
end.

Fortran Program

Replace Section B of the first Fortran program in this section by

D020 K=1,N
T(K+1)=T(K)+H

R1=Y(K)* (1 + EXP(— Y(K))) + EXP(T(K))

R2=(Y(K)+H*R1)* (1 + EXP(— (Y(K) + H*R1))) + EXP(T(K + 1))
Y(K+1)=Y(K)+(H/2)*(R1+R2)

20 CONTINUE

See also C Program 10 in Appendix C for a sample C program.
Weset A=1, T[0]=0and Y[0]=0(T(1)=0and Y(1)=0 in the Fortran pro-
gram) and ran these programs for N =10, 20, 40, 80, 160, and 320. The re-
sults of these computations are given in Table 3. Observe that y,¢ and y;,

Table 3
N h N
10 0.1 3.11450908
20 0.05 3.12560685
40 0.025 3.1286243
80 0.0125 3.12941247
160 0.00625 3.12961399
320 0.003125 3.12964943

agree in their first four decimal places. Hence the approximation y(1)=
3.12964943 is correct to four decimal places.

(iv) The method of Runge—Kutta
Pascal Program

Program Runge_Kutta (input, output);

var
T, Y: array[0..999] of real;
a, h, LK1, LK2, LK3, LK4: real;
k, N: integer;
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begin
readIn(T[0], Y[O], a,N);
h:=a/N;
page;
fork:=0to N—1do
begin
Tlk+1]:=T[k]+h;
LK1 :=(Y[k] * (1 +exp(—YI[k])) +exp(T[K]);
LK2:=(Y[Kk] +(h/2) « LK1) (1 + exp(— (Y[k] + (h/2) « LK1)))

+exp(T[k] + (h/2));

LK3:=(Y[K] + (h/2) + LK2) = (1 +exp(— (Y [k] + (h/2)  LK2)))
+exp(T[k]+(h/2));

LK4:=(Y[K]+h+LK3) =~ (1+exp(—(Y[k] +h+LK3)))
+exp(T[k+1]);

Y[k+1]:=Y[k] + (h/6) » (LK1+2+LK2+ 2« LK3 + LK4),

end;
writeln(‘N’:4, ‘h’:10, ‘Y[N]':20);
writeIn(N:4,* ":2,h:10:7," ":2,Y[N]:18:10);
00110

Fortran Program

Replace Section B of the first Fortran program in this section by

D020 K=1,N

T(K+1)=T(K)+H

LK1= Y(K) * (1 + EXP(— Y(K)) + EXP(T(K))

LK2 = (Y(K)+(H/2)* LK1) (1 + EXP(— (Y(K) +(H/2) * LK1)))
1 | +EXP(T(K)+(H/2))

LK3 = (Y(K)+(H/2)* LK2) x (1 + EXP(— (Y(K) +(H/2) * LK2)))
1| +EXP(T(K)+ (H/2))

LK4 = (Y(K)+H* LK3) * (1 + EXP(— (Y(K) + H * LK3)))

1| +EXP(T(K+1))

20 Y(K +1)=Y(K)+ (H/6) x (LK1 +2 xLK2 + 2 x LK3 + LK4)
CONTINUE

See also C Program 11 in Appendix C for a sample C program.
Weset A=1, T[0]=0and Y[0]=0(T(1)=0and Y(1)=0in the Fortran pro-
gram) and ran these programs for N =10, 20, 40, 80, 160, and 320. The re-
sults of these computations are given in Table 4. Notice that our approxi-
mation of y(1) is already correct to four decimal places with 2=0.1, and
that it is already correct to eight decimal places with A= 0.00625(N = 160).
This example again illustrates the power of the Runge-Kutta method.

We conclude this section with two examples which point out some addi-
tional difficulties which may arise when we solve initial-value problems on
a digital computer.
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Table 4
N h N
10 0.1 3.1296517
20 0.05 3.12967998
40 0.025 3.1296819
80 0.0125 3.12968203
160 0.00625 3.12968204
320 0.003125 3.12968204

Example 2. Use the Runge-Kutta method to find approximate values of
the solution of the initial-value problem
Y _ 5.2
A =1
T =rts ()
at the points t, =k /N, k=1,...,N.
Solution.

Pascal Program

Program Runge_Kutta (input, output);

var
T, Y: array[0..999] of real;
a, h, LK1, LK2, LK3, LK4: real;
k, N: integer;

begin
readIn(T[0], Y[0], a, N);
h:=a/N;
page;
fork:=0to N—1do
begin
Tlk+1]:=T[k]+h;
LK1:=T[k] *T[K] + Y[k] = Y[K];
LK2 :=(T[k] +h/2) » (T[k] + h/2)
+(Y[K] + (h/2) » LK1) = (Y[K] 4+ (h/2) + LK1);
LK3:=(T[k]+h/2) = (T[k] +h/2)
+(Y[k] + (h/2) » LK2) = (Y[K] + (h/2) + LK2);
LK4:=(T[k]+ h) = (T[k] + h)
+(Y[k] + h=LK3) * (Y[k] + h « LK3);
Y[k+1]:=Y[k] + (h/6) » (LK1 +2+LK2+ 2« LK3 + LK4);
end;
writeIln(‘T’:4, ‘Y’:15);
fork:=0to Ndo
writeIn(T[k]:10:7,* ':2,Y[k]:16:9);
end.
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Fortran Program

Replace Sections B and C of the first Fortran program in this section by
D020 K=1,N

TK+1)=T(K)+H

LK1=T(K)* *2+ Y(K)* %2

Section B LK2=(T(K)+(H/2))* *2+(Y(K)+(H/2)*LK1)* %2
Do computa- LK3=(T(K)+(H/2))* *2+(Y(K)+(H/2) *LK2) * * 2
tions LK4=(T(K)+ H)* 2+ (Y(K)+ H*LK3) * *2

Y(K+1)=Y(K)+ (H/6) * (LK1 +2xLK2 +2 » LK3 +LK4)
20 CONTINUE

NA=N+1
WRITE (6,30) (T(J), Y(J),J=1,NA)
SectonC |30 | | FORMAT (1H1,3X, 1HT,4X, 1HY /(1H,1X,F9.7,

Print out 1| 2X,F20.9/))
results CALL EXIT
| END

See also C Program 12 in Appendix C for a sample C program.

We attempted to run these programs with 4 =1, T[0]=0, Y[0]=1(T(1) =0,
and Y (1)=1 in the Fortran program) and N = 10, but we received an error
message that the numbers being computed exceeded the domain of the
computer. That is to say, they were larger than 10%%, This indicates that the
solution y () goes to infinity somewhere in the interval [0, 1]. We can prove
this analytically, and even obtain an estimate of where y () goes to infinity,
by the following clever argument. Observe that for 0< ¢ < 1, y(¢) is never
less than the solution ¢,(£)=1/(1—1¢) of the initial-value problem

%=y2, y(0)=1.

In addition, y(#) never exceeds the solution ¢,(¢)=tan(t+ «/4) of the ini-
tial-value problem dy /dt=1+y? y(0)=1. Hence, for 0< <1,

_11?7 <y()<tan(t+7/4).

This situation is described graphically in Figure 1. Since ¢,(¢) and ¢,(¢) be-
come infinite at t=1 and ¢= /4 respectively, we conclude that y(#) be-
comes infinite somewhere between 7 /4 and 1.

The solutions of most initial-value problems which arise in physical and
biological applications exist for all future time. Thus, we need not be
overly concerned with the problem of solutions going to infinity in finite
time or the problem of solutions becoming exceedingly large. On the other
hand, though, there are several instances in economics where this problem
is of paramount importance. In these instances, we are often interested in
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y

M;(t)#an(n—z—) y(t)

=1
A
T —= ¢
t=Z t=1
Figure 1

determining whether certain differential equations can accurately model a
given economic phenomenon. It is often possible to eliminate several of
these equations by showing that they allow solutions which are unrealisti-
cally large.

Example 3. Use Euler’s method to determine approximate values of the
solution of the initial-value problem
dy

—_— = —3/4 1 -71 =
= =y +asin, o y(0)=0 (1)

at the points | /N,2/N,...,2.
Solution. The programming for this problem is simplified immensely by
observing that

I, y>0
yly|73*=(sgny)|y|'/*, where sgny=: 0, y=0
-1, y<0

Pascal Program

Program Euler (input, output);

const
P1=23.141592654;

var
T, Y: array[0..999] of real;
h: real;
k, N: integer;
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begin

1.17 What to do in practice

readin(N);

page;

h:=2/N;

T[1]:=h;

Y[1]:=0;
fork:=1toN—1do

begin
T[k+1]:=T[k] +h;
if Y[k]=0then Y[k+1]:=h«T[k] »sin(PI/T[k]) else
Y[k+1]:=Y[k]+h = (Y[k] *exp((—3/4) = In(abs(Y[k])))

+ T[k] *sin(PI/T[K]));

writeln(‘T":4, ‘Y’:15);
fork:=1to Ndo

10

20

30

writeln(T[k]:10:7,* ’:2,Y[k]:16:9);
end.

Fortran Program

DIMENSION T(1000), Y(1000)

READ (5,10) N

FORMAT (15)

H=2/N

T(1)=H

Y(1)=0

D020 K=2,N

T(K)=T(K—1)+H

Y(K)=Y(K—1)+H+ (SIGN(Y(K—1)) » ABS(Y(K—1)) + +0.25
+T(K—1) « SIN(3.141592654/T (K — 1))

CONTINUE

WRITE(6,30) 0,0, (T(J), YW),J=1,N)

FORMAT (1H1,3X, 1HT, 4X, 1HY /(1H,1X,F10.7,2X,F20.9 /)

CALL EXIT

END

See also C Program 13 in Appendix C for a sample C program.
When we set N =25 we obtained the value 2.4844172 for y(2), but when we
set N=27, we obtained the value —0.50244575 for y(2). Moreover, all the
Vi were positive for N =25 and negative for N =27. We repeated these
computations with N =89 and N=91 and obtained the values 2.64286349
and —0.6318074 respectively. In addition, all the y, were again positive for
N =89 and negative for N=91. Indeed, it is possible, but rather difficult,
to prove that all the y, will be positive if N=1,5,9,13,17,... and negative
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1 First-order differential equations

if N=3,7,11,15,... . This suggests that the solution of the initial-value
problem (1) is not unique. We cannot prove this analytically, since we
cannot solve the differential equation explicitly. It should be noted though,
that the existence—uniqueness theorem of Section 1.10 does not apply here,
since the partial derivative with respect to y of the function |y|~3/% +
tsinz /t does not exist at y =0.

Most of the initial-value problems that arise in applications have unique
solutions. Thus, we need not be overly concerned with the problem of non-
uniqueness of solutions. However, we should always bear in mind that ini-
tial-value problems which do not obey the hypotheses of the existence—
uniqueness theorem of Section 1.10 might possess more than one solution,
for the consequences of picking the wrong solution in these rare instances
can often be catastrophic.

EXERCISES

In each of Problems 1-5, find the solution of the given initial-value prob-
lem at t=1 to four decimal places accuracy.

3 — -y = _é =1-— 2 =
1. E_y-’-e +21, y(O)—O 2, dt =1 t+y s y(O)—-O

dy _ 2+ y*? _ % = o2 =
YT ey 7O70 g = y0=l

& _ s -
S. oYy y©=1
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Second-order linear
differential equations

2.1 Algebraic properties of solutions
A second-order differential equation is an equation of the form
d’ dy
QF_f(t’y’E)' (1)
For example, the equation
d’ _ . dy \?
F —smt+3y+(gt—)

is a second-order differential equation. A function y =y (¢) is a solution of
(1) if y(¢) satisfies the differential equation; that is

d;)zgt) =f( dy(t))

tyy(t)’ 7 M

Thus, the function y(¢)=cost is a solution of the second-order equation
d?y /di*= —y since d*(cost)/dt*= —cost.

Second-order differential equations arise quite often in applications.
The most famous second-order differential equation is Newton’s second
law of motion (see Section 1.7)

d’ dy
ma=F (v )
which governs the motion of a particle of mass m moving under the in-
fluence of a force F. In this equation, m is the mass of the particle, y =y ()
is its position at time ¢, dy /dt is its velocity, and F is the total force acting

on the particle. As the notation suggests, the force F may depend on the
position and velocity of the particle, as well as on time.
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2 Second-order linear differential equations

In addition to the differential equation (1), we will often impose initial
conditions on y(¢) of the form

y(t)=yo  y'(t)=ro (1)
The differential equation (1) together with the initial conditions (1’) is re-
ferred to as an initial-value problem. For example, let y(¢)* denote the
position at time ¢ of a particle moving under the influence of gravity. Then,
y(¢) satisfies the initial-value problem

d?y

dr?

where y, is the initial position of the particle and yj is the initial velocity of
the particle.

Second-order differential equations are extremely difficult to solve. This

should not come as a great surprise to us after our experience with first-

order equations. We will only succeed in solving the special differential
equation

=—g; y(t)=yo ' (to)=yo

Zf +p(t) ; Ta()y=g(0). (2

Fortunately, though, many of the second-order equations that arise in ap-
plications are of this form.

The differential equation (2) is called a second-order linear differential
equation. We single out this equation and call it linear because both y and
dy/dt appear by themselves. For example, the differential equations

dy . &
5 +3t— +(sint)y=e'
and

are linear, while the differential equations
d?
d—f +3a)z +siny=1¢

d? 2
dr* \ar
are both nonlinear, due to the presence of the siny and (dy/dt)? terms, re-
spectively.

We consider first the second-order linear homogeneous equation

dzy

dt 2
*The positive direction of y is taken upwards.

and

+p(t) = Ta()y=0 (3)
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2.1 Algebraic properties of solutions

which is obtained from (2) by setting g(¢r)=0. It is certainly not obvious at
this point how to find all the solutions of (3), or how to solve the initial-
value problem

d’ & : ,

—2 PP +a(y=0 y(t)=yo ¥ (10) =)o (4)
Therefore, before trying to develop any elaborate procedures for solving
(4), we should first determine whether it actually has a solution. This infor-
mation is contained in the following theorem, whose proof will be indi-
cated in Chapter 4.

Theorem 1. (Existence—uniqueness Theorem). Let the functions p(t) and
q(t) be continuous in the open interval a <t < 3. Then, there exists one,
and only one function y(t) satisfying the differential equation (3) on the en-
tire interval a < t < B, and the prescribed initial conditions y (ty)=yq, y'(t)
=yq. In particular, any solution y = y(t) of (3) which satisfies y(15)=0 and
Y'(t5)=0 at some time t =ty must be identically zero.

Theorem 1 is an extremely important theorem for us. On the one hand,
it is our hunting license to find the unique solution y(¢) of (4). And, on the
other hand, we will actually use Theorem 1 to help us find all the solutions
of (3).

We begin our analysis of Equation (3) with the important observation
that the left-hand side

, , , &, d¥
yapy ey (y=2r=ts

of the differential equation can be viewed as defining a “function of a
function”: with each function y having two derivatives, we associate
another function, which we’ll call L[y], by the relation

LIy](@)=y"()+p()y'(1)+q()y ().
In mathematical terminology, L is an operator which operates on func-
tions; that is, there is a prescribed recipe for associating with each function
y a new function L[y].
Example 1. Let p(#)=0 and ¢(¢)=1t. Then,

Liy]()=y"()+ ().

If y(f)=cost, then

L[ y](t)=(cost)" +tcost=(t—1)cost,
and if y(f)= 13, then

L{y](t)=(2)" +1()=1t*+61.
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2 Second-order linear differential equations

Thus, the operator L assigns the function (¢ —1)cos¢ to the function cos¢,
and the function 67+ #* to the function 3,

The concept of an operator acting on functions, or a “function of a
function” is analogous to that of a function of a single variable ¢. Recall
the definition of a function f on an interval I: with each number ¢ in / we
associate a new number called f(z). In an exactly analogous manner, we
associate with each function y having two derivatives a new function called
L[y]. This is an extremely sophisticated mathematical concept, because in
a certain sense, we are treating a function exactly as we do a point.
Admittedly, this is quite difficult to grasp. It’s not surprising, therefore,
that the concept of a “function of a function” was not developed till the
beginning of this century, and that many of the “high powered” theorems
of mathematical analysis were proved only after this concept was
mastered.

We now derive several important properties of the operator L, which we
will use to great advantage shortly.

Property 1. L{cy]=cL[y], for any constant c.

Proor. Llcy](t)=(cy)"(1)+p(1)(cy) (1) + q()(cy)(1)
=o"()+cp(1)y' (1) +cq() y(1)
=c[y"()+p(1)y'()+q(1)y(1)]
=cL[y](1). O

The meaning of Property 1 is that the operator L assigns to the function
(cy) ¢ times the function it assigns to y. For example, let

LIy ()=y"(1)+6y'(1)=2p(1).
This_operator L assigns the function
(13)" +6(2y —2(2) =2+ 121 =22

to the function 2. Hence, L must assign the function 5(2+ 127 —2¢2) to the
function 5¢2.

Property 2. L[y, +y,]=L[y,]+ L[y,].

Proor.

Ly +»](0)=(p1+)" () +p () y1+,) (1) +q()( v, +y,)(2)
=7 (O)+y; () +p()y1()+p()yy()+q()y (1) +q(1) y,(2)
=[y7 () +p()yi(D+q(D)y (D ]+ [y () +p (D) y5(1)+a(1) y,(1)]
=Ly, J()+ L] y,](0). O

The meaning of Property 2 is that the operator L assigns to the function
Y1+ y, the sum of the functions it assigns to y, and y,. For example, let

LIy =y"(0)+2" () -y (1)
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2.1 Algebraic properties of solutions

This operator L assigns the function
(cost)” +2(cost) —cost= —2cost—2sint
to the function cost, and the function
(sinz)” +2(sin¢)’ —sint=2cost —2sin¢
to the function sinz. Hence, L assigns the function
(—2cost—2sint)+2cost—2sint = —4sint

to the function sin? + cosz.
Definition. An operator L which assigns functions to functions and which

satisfies Properties 1 and 2 is called a linear operator. All other opera-
tors are nonlinear. An example of a nonlinear operator is

” 4
LyJ(n=y"()-2[y(n)]"
This operator assigns the function
4

11" 1y_2 2 _
(t) 2t<t)_z3 t3~0
to the function 1/¢, and the function
C ”
(7)

to the function c¢/t. Hence, for ¢#0,1, and y(#)=1/t, we see that L[cy]
#cL[y]

2(e)' =262t 2e(1-¢)

The usefulness of Properties 1 and 2 lies in the observation that the
solutions y(¢) of the differential equation (3) are exactly those functions y
for which

L[y ](O)=y"()+p(t)y'()+q(2)y(2)=0.

In other words, the solutions y(f) of (3) are exactly those functions y to
which the operator L assigns the zero function.* Hence, if y(¢) is a solution
of (3) then so is ¢y (¢), since

Lley](t)=cL[y](1)=0.
If y,(r) and y,(¢) are solutions of (3), then y,(#)+ y,(¢) is also a solution of
(3), since

Ly +»,J()=L[y, ](1)+ L[ y,](1)=0+0=0.
Combining Properties 1 and 2, we see that all linear combinations

11 (0)+c9,(1)
of solutions of (3) are again solutions of (3).

*The zero function is the function whose value at any time ¢ is zero.
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2 Second-order linear differential equations

The preceding argument shows that we can use our knowledge of two
solutions y,(¢) and y,(¢) of (3) to generate infinitely many other solutions.
This statement has some very interesting implications. Consider, for exam-
ple, the differential equation

d%y
—=+y=0. 5
2t %)

Two solutions of (5) are y,(f)=cost and y,(¢t)=sins. Hence,
y(#)=c,cost+c,sint (6)

is also a solution of (5), for every choice of constants ¢, and c¢,. Now,
Equation (6) contains two arbitrary constants. It is natural to suspect,
therefore, that this expression represents the general solution of (5); that is,
every solution y(¢) of (5) must be of the form (6). This is indeed the case,
as we now show. Let y(¢) be any solution of (5). By the existence-unique-
ness theorem, y(f) exists for all 7. Let y(0)=y,, »'(0)=y;, and consider the
function

o(t)=yycost+ yosint.
This function is a solution of (5) since it is a linear combination of solu-
tions of (5). Moreover, ¢(0)=y, and ¢'(0)=y;. Thus, y(¢) and ¢(¢) satisfy
the same second-order linear homogeneous equation and the same initial

conditions. Therefore, by the uniqueness part of Theorem 1, y(¢) must be
identically equal to ¢(¢), so that

y(t)=yqcost+ygsint.
Thus, Equation (6) is indeed the general solution of (5).
Let us return now to the general linear equation (3). Suppose, in some

manner, that we manage to find two solutions y,(¢) and y,(¢) of (3). Then,
every function

y(0)=c1y1(6)+cyp2(2) ()
is again a solution of (3). Does the expression (7) represent the general

solution of (3)? That is to say, does every solution y () of (3) have the form
(7)? The following theorem answers this question.

Theorem 2. Let y(t) and y,(t) be two solutions of (3) on the interval a <1<
B, with
Y1(0y2(D)=y1(0) y2(2)
unequal to zero in this interval. Then,
y(O)y=c1y1(1)+cy0,(1)
is the general solution of (3).

PrOOF. Let y(7) be any solution of (3). We must find constants ¢, and c,
such that y ()= c, y,(£)+ ¢, y5(¢). To this end, pick a time ¢, in the interval
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2.1 Algebraic properties of solutions

(a, 8) and let y, and y denote the values of y and y’ at ¢ = t,. The constants
¢, and c,, if they exist, must satisfy the two equations

¢171(to) + €272(t0) = Yo
¢ y1(to) + c293(%) =Yo-
Multiplying the first equation by y5(¢,), the second equation by y,(¢,) and
subtracting gives
c1[71(1) ¥5(t0) =¥ (10) ¥2(10) ] =¥0 72 (t0) = Yo y2(t0).
Similarly, multiplying the first equation by y|(?,), the second equation by
y1(to) and subtracting gives

Cz[yi (%0) ¥2(t0) =1 (to))é(to)] =y0)1(t) = ¥o1(%)-

Hence,
(= Yoy2(to) = yoy2(to)
Y1(t0) ¥2 () = ¥1(20) ¥2(%0)
and
Cz Yoy1(t0) —yor1 (%)

Y1(2) ¥2(2) = ¥1(10) y2 (%)

if y1(20) y2(10) = ¥1(10) y2(£) #0. Now, let
o(1)=cy (1) +cyp,(1)
for this choice of constants ¢;,c,. We know that ¢(¢) satisfies (3), since it is
a linear combination of solutions of (3). Moreover, by construction, ¢(t,) =
Yo and ¢'(t)) =yq. Thus, y(¢) and ¢(7) satisfy the same second-order linear
homogeneous equation and the same initial conditions. Therefore, by the
uniqueness part of Theorem 1, y(#) must be identically equal to ¢(¢); that
s,
y()=c1y1()+cy0,(2), a<t<B. O

Theorem 2 is an extremely useful theorem since it reduces the problem
of finding all solutions of (3), of which there are infinitely many, to the
much simpler problem of finding just two solutions y,(#),y,(f). The only
condition imposed on the solutions y,(r) and y,(¢) is that the quantity
Y1(Oy3(8) — y1(H)y,(¢) be unequal to zero for a <¢< B. When this is the
case, we say that y,(¢) and y,(¢) are a fundamental set of solutions of (3),
since all other solutions of (3) can be obtained by taking linear combina-
tions of y () and y,(?).

Definition. The quantity y,(7) y3(t) —y1(?)y,(f) is called the Wronskian of
y1 and y,, and is denoted by W (1)= W[y ,,y,1(?).

Theorem 2 requires that W[y,,y,](¢) be unequal to zero at all points in
the interval (@, 8). In actual fact, the Wronskian of any two solutions
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2 Second-order linear differential equations

yi(0),y(f) of (3) is either identically zero, or is never zero, as we now
show.

Theorem 3. Let p(¢) and q(¢) be continuous in the interval a <1< S, and let
() and y(¥) be two solutions of (3). Then, W|y,,y,l(?) is either identi-
cally zero, or is never zero, on the interval a <t<p.

We prove Theorem 3 with the aid of the following lemma.

Lemma 1. Let y,(¢) and y,(t) be two solutions of the linear differential equa-
tiony” +p(t)y’' + q(t)y =0. Then, their Wronskian

W ()=W[yuy: () =y () »2(1) —y1 (1) y2(2)
satisfies the first-order differential equation
W’ +p(1)W=0.
ProOOF. Observe that
W)= %(ylyé-%yz)
=11 YD

=12 =YYy
Since y, and y, are solutions of y” + p(¢)y’+ q(t)y =0, we know that
y2=-p(1)y:=49(1)y,
and
y=-p(O)ryi—q()y,
Hence,
W (@) =y,[ —p(D)y3= () y;] =y —p()yi—a(t) ]
=-p()[y1y3—r171]
=-p(OW(1). O

We can now give a very simple proof of Theorem 3.

PROOF OF THEOREM 3. Pick any ¢, in the interval (a,8). From Lemma 1,

W] ] ()= W[yl,yz]uo)exp( -f ’p(s)ds).

]

t
Now, exp(—f’ p(s)ds) is unequal to zero for a < ¢< 8. Therefore,
)

W{y,»,](¢) is either identically zero, or is never zero. 0
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2.1 Algebraic properties of solutions

The simplest situation where the Wronskian of two functions y,(#),y,(?)
vanishes identically is when one of the functions is identically zero. More
generally, the Wronskian of two functions y,(#),y,(?) vanishes identically if
one of the functions is a constant multiple of the other. If y,=cy,, say,
then

W[ y1p2](0)=y1(er)) —»i(er,)=0.
Conversely, suppose that the Wronskian of two solutions y (),y,(t) of (3)

vanishes identically. Then, one of these solutions must be a constant multi-
ple of the other, as we now show.

Theorem 4. Let y,(t) and y,(t) be two solutions of (3) on the interval a <t<
B, and suppose that W{y,,y,|(t,) =0 for some t, in this interval. Then, one
of these solutions is a constant multiple of the other.

ProoF #1. Suppose that W[y,,y,)(#,)=0. Then, the equations

c1y1(t) +¢372(%)=0
ci1(to) +c2y5(%) =0

have a nontrivial solution ¢,,c,; that is, a solution c¢,,c, with |¢||+]|c,| #0.
Let y(#)= ¢, y,(t) + ¢, y,(2), for this choice of constants ¢,,c,. We know that
(1) is a solution of (3), since it is a linear combination of y,(¢) and y,(?).
Moreover, by construction, y(?,)=0 and y’(¢,)=0. Therefore, by Theorem
1, y(?) is identically zero, so that

(D) +60,(1) =0, a<t<p,

If ¢, #0, then y ()= —(c,/c,)y,(¢), and if ¢, # 0, then y,(7)=
—(c,/ ¢ y(2). In either case, one of these solutions is a constant multiple
of the other. O

ProofF #2. Suppose that W[y,,y,l(t,)=0. Then, by Theorem 3,
Wy.,»,)(2) is identically zero. Assume that y,(7)y,(t)#0 for a <t < B.
Then, dividing both sides of the equation

Y1)y =1 (1) y2(1)=0

by y (1) y,(?) gives

ARV

y()  »()
This equation implies that y,(f)= cy,(¢) for some constant c.

Next, suppose that y,(f)y,(¢) is zero at some point /=t* in the interval

a < t< fB. Without loss of generality, we may assume that y,(¢*)=0, since
otherwise we can relabel y, and y,. In this case it is simple to show (see Ex-

ercise 19) that either y,(1)=0, or y,(£)=[y3(t*)/y1(t*)]y(¢). This com-
pletes the proof of Theorem 4. 0
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2 Second-order linear differential equations

Def

inition. The functions y,(?) and y,(¢) are said to be linearly dependent

on an interval I if one of these functions is a constant multiple of the
other on I. The functions y,(#) and y,(¢) are said to be linearly indepen-
dent on an interval I if they are not linearly dependent on I.

Corollary to Theorem 4. Two solutions y(t) and y,(t) of (3) are lineariy in-
dependent on the interval a <t< B if, and only if, their Wronskian is un-
equal to zero on this interval. Thus, two solutions y (1) and y,(t) form a
Jundamental set of solutions of (3) on the interval a <t < B if, and only if,
they are linearly independent on this interval.

EXERCISES
1. Let L[y}(6)=y"()—3ty'(£)+3y(¢). Compute

(a) L[e’), (b) Llcos V3 #], (c) L[2e'+4cosV3 1),

(d) L[}, (e) L[51%, ® Li1, (8) L[*+31].
2. Let L[y} (®)=y"(£)—6y’'(t)+5y(¢). Compute

(a) Lle'), (b) L{e*}, (© Lle*), (d) Lle™],
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(e) L[z}, ® L) (8) L[+21).

. Show that the operator L defined by

L)) = ‘(s

is linear; that is, L[cy]=cL[y] and L[y, +y,]=L[y,]+ L[y,).

. Let LIy =y"())+p(D)y' (1) + q(t)y(?), and suppose that L[t*]=¢+1 and

L{t]=2¢+2. Show that y(¢)=t—2¢? is a solution of y" + p(£)y’ + q(t)y =0.

. (a) Show that y,(£)=V? and y,(t)=1/t are solutions of the differential equa-

tion
215" +3p' —y=0 Q)

on the interval 0< ¢ < 0.

(b) Compute W[y,,y,)(¢). What happens as ¢ approaches zero?

(c) Show that y(#) and y,(f) form a fundamental set of solutions of (*) on the
interval 0< 1< co.

(d) Solve the initial-value problem 2¢4y” +38'—y =0; y(1)=2, y’'(1)=1.

. (a) Show that y,(f)=e~"/2 and y,()= e“z/zf(:e’z/zds are solutions of

y”+t,yl+y=0 (*)

on the interval — o0 <t < c0.

(b) Compute W[yy,y,)?).

(c) Show that y; and y, form a fundamental set of solutions of (*) on the inter-
val —oo <1< 00.

(d) Solve the initial-value problem y” + &y’ +y=0; y(0)=0, y'(0)=1.
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7. Compute the Wronskian of the following pairs of functions.

(a) sinat,cosbt (b) sin?t,1—cos2t
(c) eat’ ebt (d) eul’ te?
(e) t,tInt (f) e*sinbt,e* cosbt

8. Let y,(#) and y,(r) be solutions of (3) on the interval — oo << oo with y,(0)=
3,»1(0)=1, y5(0)=1, and y5(0) = 1. Show that y () and y,(¢) are linearly depen-
dent on the interval — oo << 0.

9. (a) Let y,(#) and y,(¢) be solutions of (3) on the interval a <t < 8, with y,(t)=
1, y1(t5) =0, y,(2)) =0, and y5(#,) = 1. Show that y,(¢) and y,(¢) form a
fundamental set of solutions of (3) on the interval a << S.

(b) Show that y(¢)=yoy,(£)+yoy.(?) is the solution of (3) satisfying y(#y) =y,
and y'(t9) = yo.

10. Show that y(¢#)=¢? can never be a solution of (3) if the functions p(¢) and ¢(?)
are continuous at r=0.

11. Lety,(9)=1* and y,()=1¢|.

(a) Show that y, and y, are linearly dependent on the interval 0 < ¢ < 1.

(b) Show that y, and y, are linearly independent on the interval —1< < 1.
(c) Show that W[y,,y,|(¢) is identically zero.

(d) Show thaty, and y, can never be two solutions of (3) on the interval — 1<«

< 1 if both p and g are continuous in this interval.

12. Suppose that y, and y, are linearly independent on an interval I. Prove that z,
=y,+y, and z,=y,—y, are also linearly independent on I.

13. Let y, and y, be solutions of Bessel’s equation
"+’ +(2—nPy=0
on the interval 0< ¢ < o0, with y,(1)=1, y;(1)=0, y,(1)=0, and y5(1)=1. Com-

pute W[y ,»,)(0).

14. Suppose that the Wronskian of any two solutions of (3) is constant in time.
Prove that p(#)=0.

In Problems 15-18, assume that p and g are continuous, and that the func-
tions y; and y, are solutions of the differential equation

y'+p()y' +q()y=0
on the interval a <t <.

15. Prove that if y, and y, vanish at the same point in the interval a <t < 8, then
they cannot form a fundamental set of solutions on this interval.

16. Prove that if y, and y, achieve a maximum or minimum at the same point in
the interval a < # < 8, then they cannot form a fundamental set of solutions on
this interval.

17. Prove that if y; and y, are a fundamental set of solutions, then they cannot
have a common point of inflection in a < < B unless p and ¢ vanish simulta-
neously there.
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2 Second-order linear differential equations

18. Suppose that y, and y, are a fundamental set of solutions on the interval — o
< t< oo. Show that there is one and only one zero of y, between consecutive
zeros of y,. Hint: Differentiate the quantity y,/y, and use Rolle’s Theorem.

19. Suppose that W[y,,y,J(1*)=0, and, in addition, y,(¢*)=0. Prove that either
Yi()=0 or y () =[y(t*)/yi(t)]y(0). Hint: It W[yy,y,)(1*)=0 and y,(¢*)=0,
then y,(:*)yi(t*)=0.

2.2 Linear equations with constant coefficients

We consider now the homogeneous linear second-order equation with con-
stant coefficients
d2

L[y]=a;§+b%+cy=0 (1)
where a, b, and ¢ are constants, with a50. Theorem 2 of Section 2.1 tells
us that we need only find two independent solutions y, and y, of (1); all
other solutions of (1) are then obtained by taking linear combinations of y,
and y,. Unfortunately, Theorem 2 doesn’t tell us how to find two solutions
of (1). Therefore, we will try an educated guess. To this end, observe that a
function y(¢) is a solution of (1) if a constant times its second derivative,
plus another constant times its first derivative, plus a third constant times
itself is identically zero. In other words, the three terms ay”, by’, and ¢y
must cancel each -other. In general, this can only occur if the three func-
tions y(2), y'(t), and y”(¢) are of the “same type”. For example, the func-
tion y(f)=1> can never be a solution of (1) since the three terms 20at’,
5bt4, and ct’ are polynomials in ¢ of different degree, and therefore cannot
cancel each other. On the other hand, the function y(¢f)=e", r constant,
has the property that both y'(¢) and y”(¢) are multiples of y(¢). This sug-
gests that we try y(f)=e" as a solution of (1). Computing

Lle"]=a(e™) +b(e™) +c(e™)
=(ar*+br+c)e”,
we see that y(f)=e" is a solution of (1) if, and only if
ar*+ br+c=0. 0))
Equation (2) is called the characteristic equation of (1). It has two roots
ry,r, given by the quadratic formula

_ —b+ Vb —dac poo—b= Vb2—4dac

"= 2a ’ 2= 2a
If b2 —4ac is positive, then r, and r, are real and distinct. In this case, y,(¢)
=e" and y,(r)=e" are two distinct solutions of (1). These solutions are
clearly linearly independent (on any interval I), since e"* is obviously not
a constant multiple of e”* for r,# r,. (If the reader is unconvinced of this
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2.2 Linear equations with constant coefficients

he can compute
W[ er,t,erzt] = (’2_ r])e(rl+r2)t’
and observe that W is never zero. Hence, e™ and ¢’ are linearly indepzn-

dent on any interval I.)

Example 1. Find the general solution of the equation

dy

— +5—=+4y=0. 3

Pty (€)
Solution. The characteristic equation r>+5r+4=(r+4)(r+1)=0 has two
distinct roots r;= —4 and r,= — 1. Thus, y,(1)=e~* and y,(t)=e "' form a

fundamental set of solutions of (3), and every solution y(¢) of (3) is of the
form

y(t)=cie ¥+ ce”!

for some choice of constants ¢, c,.

Example 2. Find the solution y(¢) of the initial-value problem

dy &
2 A T Yy=0 yO=1 y(0)=2

Solution. The characteristic equation r>+4r—2=0 has 2 roots

A VIEES _ o, v

r
and

po A=VIEH8 _ e

2

Hence, y,(f)=e™ and y,(1)=e"
y"+4y’' =2y =0, so that

4 !

are a fundamental set of solutions of

y(t)zcle(—2+\/€)t+cze(—z—\/g)z

for some choice of constants c;,c,. The constants ¢, and ¢, are determined
from the initial conditions

ci+c,=1 and (—=2+V6)c,+(=2-V6 )c,=2.

From the first equation, c,=1—c,. Substituting this value of ¢, into the
second equation gives

(=2+V6)e,—(2+V6)(1—c;)=2, or 2V6c,=4+ V6.
Therefore, ¢;=2/V6 +1,¢,=1—¢;=3-2/V6, and

(1 2 Y -2+Vey (1 __2 —(2+ V6 )t
r0=(3+ 75 ) (z-gg e
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2 Second-order linear differential equations

EXERCISES

Find the general solution of each of the following equations.

d% d _d
Z?—y=0 2.6 —-7—-+y=0

ar d
d¥ _dy dy _dy
3. F"‘3E+y—0 4. 3;{'4-67174-2)'—0

1.

Solve each of the following initial-value problems.
dy _dy ,
5. F—3gt‘—4y=0; y(©0)=1, y'(0)=0

d¥y dy p
6. 2zz_+a.t_—10y—0, y()=35, y'(H)=2

dy &
75— 455 =0 y(0)=0, y(©)=1

d’ _dy
8. W—6E+y=0; y@=1y'(2)=1

Remark. In doing Problems 6 and 8, observe that e"“~% is also a solution
of the differential equation ay” + by’ + ¢y =0 if ar*+ br+¢=0. Thus, to
find the solution y (¢) of the initial-value problem ay” + by’ + ¢y =0; y(t5) =
Yoy (t)=yo we would write y(£)=c,e" % + c,e"" =% and solve for ¢,
and ¢, from the initial conditions.

9. Let y(¢) be the solution of the initial-value problem

d  dy ,
F+5'd—t+6y-—0, y(O)—l, y(O)—V

For what values of ¥V does y(¢) remain nonnegative for all ¢ > 0?
10. The differential equation
Liyl=8y"+aty’+ By =0 ™)

is known as Euler’s equation. Observe that t2y”, £, and y are all multiples of
t" if y=1t". This suggests that we try y =t¢" as a solution of (*¥). Show that y=¢"
is a solution of (*) if r2+(a—1)r+ 8=0.

11. Find the general solution of the equation
2y"+5¢' -5y=0, >0
12. Solve the initial-value problem
2y"—p'=2y=0;  y(1)=0, y'(I)=1
on the interval 0 <t < oo.
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2.2 Linear equations with constant coefficients

2.2.1 Complex roots

If b2—4ac is negative, then the characteristic equation ar’+ br+c=0 has
complex roots

r=—b+i\/4ac—b2 =—b—i\/4ac—b2
! 2a 2a )

We would like to say that e™ and e™ are solutions of the differential
equation

and r,

dy &
a:jt—2+bz +¢y=0. (1
However, this presents us with two serious difficulties. On the one hand,
the function e” is not defined, as yet, for r complex. And on the other
hand, even if we succeed in defining e and e’ as complex-valued solu-
tions of (1), we are still faced with the problem of finding two real-valued
solutions of (1).
We begin by resolving the second difficulty, since otherwise there’s no
sense tackling the first problem. Assume that y(¢)=u(?)+iv(¢) is a com-
plex-valued solution of (1). This means, of course, that

alu”(£)+iv" ()] +b[w(£)+iv' (1) [+ c[u(r) +iv() | =O0. ()

This complex-valued solution of (1) gives rise to two real-valued solutions,
as we now show.

Lemma 1. Let y(t)=u(?)+ iv(t) be a complex-valued solution of (1), with a,
b, and c real. Then, y,(t)=u(t) and y,(t)=v(t) are two real-valued solu-
tions of (1). In other words, both the real and imaginary parts of a com-
plex-valued solution of (1) are solutions of (1). (The imaginary part of the
complex number o+ if is 8. Similarly, the imaginary part of the function
u(t)+iv(?) is v(1).)

Proor. From Equation (2),
[au”(1)+bu'(2)+ cu(r) |+ i[ av” (1) + b/ (t) + cv(2) ] =0. (3)

Now, if a complex number is zero, then both its real and imaginary parts
must be zero. Consequently,

au”(t)+bu'(t)+cu(r)=0 and av”(f)+bv'(r)+co(1)=0,
and this proves Lemma 1. O
The problem of defining e” for r complex can also be resolved quite
easily. Let r=a + i8. By the law of exponents,
e'=e%e®, 4
Thus, we need only define the quantity e’ for 8 real. To this end, recall
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2 Second-order linear differential equations

that

x*  x3

LTl + N +.... %)
Equation (5) makes sense, formally, even for x complex. This suggests that
we set

e*=1+x+

(iBt)*  (ipt)
—2! + 3 +....

eP=1+iBt+

Next, observe that

)’ B g BY B
1+ift+ o +...=1+ift— TR + 5 +...
B2t2 3414 ) ,8313 ,8515
= 1"'T+ 4l + ... |+ ,Bt— 3 + 30 + ...
=cos Bt + isin ft.
Hence,
et iB) = gatpift = pat (cos Bt + i sin Bt). (6)

Returning to the differential equation (1), we see that

y(t)= e[—b+i\/4ac—b2 J¢/2a

=e“”’/2“[cos Vdac—b? t/2a+ isin V4ac — b* t/2a]

is a complex-valued solution of (1) if b*—4ac is negative. Therefore, by
Lemma 1,

V dac — b?
2a

are two real-valued solutions of (1). These two functions are linearly inde-
pendent on any interval /, since their Wronskian (see Exercise 10) is never
zero. Consequently, the general solution of (1) for b —4ac <0 is

V dac — b*

2a

y()=e %/%cos Bt and y,(H)=e "/*sinfr, B=

y(ty=e "/%[c cosBr+c,sinft],  B=

Remark 1. Strictly speaking, we must verify that the formula

d
LB et

dt

is true even for  complex, before we can assert that e”* and e’ are com-
plex-valued solutions of (1). To this end, we compute

A a+ipyi_ 4 j si
e i [cos,81+zs1n,81]
= e[ (acos Bt~ Bsin Br) +i(asin Bt + Bcos fr) ]
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2.2 Linear equations with constant coefficients

and this equals (a + iB)e@**) since
(a+iB)e®* = (a+iB)e*[cos Bt +isinpr]
= e[ (accos Bt — Bsin Br) + i(asin Bz + Bcos Br) |.

Thus, (d/dt)e” =re”, even for r complex.

Remark 2. At first glance, one might think that e” would give rise to two
additional solutions of (1). This is not the case, though, since

e ===t B_\/4gc— b2 /2a
- e_b'/2a[cos(~ﬁt)+ isin(—,Bt)] = e‘b’/z“[cosﬁt— isinft].
Hence,
Re{e" }=e™"/cos fr=y,(1)
and
Im{e’z’ } = — e_b’/zasinﬁt= _Y2(t)'

Example 1. Find two linearly independent real-valued solutions of the dif-
ferential equation

2
4%—2—) +4% +5y=0. @)
Solution. The characteristic equation 4r2+4r+5=0 has complex roots r,
= —1+i and r,= —; —i. Consequently,
e =e"1/2+ D= o= 1/2c05t + je ="/ ?sint
is a complex-valued solution of (7). Therefore, by Lemma 1,
Re{e""}=e /2cost and Im{e"}=e~"/?sint

are two linearly independent real-valued solutions of (7).

Example 2. Find the solution y(¢#) of the initial-value problem

d2

—y +2% +4y=0; y©0)=1, y(0)=1.
Solution. The characterlstlc equation r2+2r+4=0 has complex roots r, =
—1+V3iand r,=—1-V3 i Hence,

et=e(=1+ V3D o=100s V3 4 je~'sin V3 ¢
is a complex-valued solution of y” +2y’+4y =0. Therefore, by Lemma 1,
both

Re{e"}=e 'cos V3t and Im{e™}=e 'sin V3¢

are real-valued solutions. Consequently,

y(t)=e"[clcos\/§ t+c,sin V3 t}
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2 Second-order linear differential equations

for some choice of constants c,,c,. The constants ¢, and ¢, are determined
from the initial conditions

1=y(0)=c,
and
This implies that

2 .
and y()=e '|cos V3 t+ —=—sin V3 ¢|.
y(9) 73

c,=lc¢,=

2
V3
EXERCISES

Find the general solution of each of the following equations.

ij t, iZy iy
3. il +2 - +3y=0 4. 4 4 -+ =0

Solve each of the following initial-value problems.

5. 4 ‘z+2y =0; y©0)=1, y'(0)=—2
2
6. d2+2‘—’y—+5y =0; y(0)=0, y'(0)=2

dt
7. Assume that b2—4ac <0. Show that
yi(f) =€~ 820~ cos B (1 —15)

and

Vdac — b?

y2(t)=e(—b/za)(t_t(’)smﬁ(t—to)’ B= 2a
are solutions of (1), for any number ¢,.

Solve each of the following initial-value problems.

dy & '
8. 2F_—“’7+3y-—0’ y(Hh=1, y'(h=1
d2 o4 ’

10. Venfy that W[e* cos Bt, e* sin 8t]= Be*".

11. Show that e is a complex-valued solution of the differential equation y” +
w2y =0. Find two real-valued solutions.

12. Show that (cost+isin#) =cosrt+isinrt. Use this result to obtain the double
angle formulas sin2¢=2sin¢cos¢ and cos2z=cos*t—sin?t.
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2.2 Linear equations with constant coefficients

13. Show that
(cost;+isint,)(cost,+isint,) =cos(t; + 1)+ isin(t, + 1,).
Use this result to obtain the trigonometric identities
cos(#,+ 1,) =cost;cost, —sint,sint,,
sin(t, + t,) =sin¢, cost, +cos?, sint,.
14. Show that any complex number a+ ib can be written in the form Ae, where

A=Va’+b? and tanf=5/a.

15. Defining the two possible square roots of a complex number Ae’ as
+ V4 e?/2 compute the square roots of i, 1 +i, —i, Vi.
16. Use Problem 14 to find the three cube roots of i.
17. (a) Let r,=A+ip be a complex root of r*+(a— 1)r+ B=0. Show that
Arin = Aiv = Pk = Mcos pln ¢t + i sin pln ¢]
is a complex-valued solution of Euler’s equation

,d? dy
t d—f tar+ By = ™)
(b) Show that *cosplInt and r*sin ,ulnt are real-valued solutions of (*).

Find the general solution of each of the following equations.

d?% ay

2 —_— =

18. *— - +tdt +y=0, >0
d? dy
2_.

19. ¢ e T Y2 +2y=0, t>0

2.2.2 Equal roots; reduction of order

If b>=4ac, then the characteristic equation ar?+ br+ c=0 has real equal
roots r,=r,= —b/2a. In this case, we obtain only one solution

yi(r)y=e"/2
of the differential equation

a—+b— +cy=0. (1
t

Our problem is to find a second solution which is independent of y,. One
approach to this problem is to try some additional guesses. A second, and
much more clever approach is to try and use our knowledge of y,(¢) to help
us find a second independent solution. More generally, suppose that we
know one solution y =y () of the second-order linear equation

d2
LIy )= 22400 + a0y =0. @)

Can we use this solution to help us find a second independent solution?
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2 Second-order linear differential equations

The answer to this question is yes. Once we find one solution y =y ,(¢) of
(2), we can reduce the problem of finding all solutions of (2) to that of
solving a first-order linear homogeneous equation. This is accomplished by
defining a new dependent variable v through the substitution

y () =y (o (2).

Then
d _ “3’ Dy dv
a~a T
and
d¥y d%, ydo dy, d%
—— =p——+2 +y,—.
dr? d | dtdr dr?
Consequently.

d%, do Y d* dv
Lly]= 7 257”“12 +p(t){ —+y, dt]+q(t)vyl

-nde +[2de‘ +p(1) ]"” +[ dy; sp) +q(z)yl]v

=y, ‘;’; [zidy— +p(1)y ]

since y,(f) is a solution of L[y]=0. Hence, y(#)=y,(¢)v(¢) is a solution of
(2) if v satisfies the differential equation

dy
jf [2—+p(t)y1}dt =0. 3)

Now, observe that Equation (3) is really a first-order linear equation for
dv/ dt. Its solution is

dv yi(1)
E=cexp[ f[ 1()+(t)

xp( - fp(t) dt) exp

cexp(—fp(t)dt)

yi(0)

yl( )
f 1(’) @

Since we only need one solution v(?) of (3), we set c=1 in (4). Integrating
this equation with respect to ¢, and setting the constant of integration equal
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2.2 Linear equations with constant coefficients

to zero, we obtain that v(f)= f u(t)dt, where

exp( - fp(t)dt)

yi(®)

u(t)= )

Hence,

y2(O)=0(D)y1()=r,() [u()ds 6)

is a second solution of (2). This solution is independent of y,, for if y,(#)
were a constant multiple of y,(7) then v(7) would be constant, and conse-
quently, its derivative would vanish identically. However, from (4)

. exp(——fp(t)dt)
- SHONE

and this quantity is never zero.

Remark 1. In writing o(¢) = f u(t)dt, we set the constant of integration

equal to zero. Choosing a nonzero constant of integration would only add
a constant multiple of y,(¢) to y,(¢). Similarly, the effect of choosing a con-
stant ¢ other than one in Equation (4) would be to multiply y,(¢) by c.

Remark 2. The method we have just presented for solving Equation (2) is
known as the method of reduction of order, since the substitution y(¢)=
yi(Ho(?) reduces the problem of solving the second-order equation (2) to
that of solving a first-order equation.

Application to the case of equal roots: In the case of equal roots, we found
y1(t)=e~%/?4 as one solution of the equation
dy &
aF+bE+cy—O. @)
We can find a second solution from Equations (5) and (6). It is important
to realize though, that Equations (5) and (6) were derived under the
assumption that our differential equation was written in the form

d2y

dt 2
that is, the coefficient of y” was one. In our equation, the coefficient of y”

is a. Hence, we must divide Equation (7) by a to obtain the equivalent
equation

(f)z +4q(t)y=0;

dy pd& ¢ _
7 +ad+ay_0'
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2 Second-order linear differential equations

Now, we can insert p(tf)=b/a into (5) to obtain that

b
exP(—f;dt) e-—br/a

u(t)= [e—bt/Za]2 =e_bt/a=l.

Hence,
y2()=p,(1) [ dr=1y,(1)

is a second solution of (7). The functions y,(¢) and y,(¢) are clearly linearly
independent on the interval — oo < ¢< o0. Therefore, the general solution
of (7) in the case of equal roots is

y(1)=cie b2 g cyre= b2 = [ ¢+ ¢yt |e b/

Example 1. Find the solution y(¢) of the initial-value problem

dy &
— +4— +4y=0; =1, y'(0)=3.
" +a— +4y =0; y(©)=1, »'(0)

Solution. The characteristic equation r?+4r+4=(r+2)>=0 has two equal
roots r;=r,= —2. Hence,

y(t)=ce H+cte

for some choice of constants ¢, ¢,. The constants ¢, and ¢, are determined
from the initial conditions

1=y(0)=c,
and
3=y'(0)=—2¢c,+c,
This implies that ¢, =1 and c,=35, so that y(/)=(1+50e "%,

Example 2. Find the solution y(#) of the initial-value problem

&

2y
PN 4
(1-7) 2 +2t—

—2=0; y(0)=3, y(0)=-4
on the interval —1<z<1.
Solution. Clearly, y,(¢)=1 is one solution of the differential equation
dy &
— L - —2y=
(1-2%) e +2t 7 2y=0. (8)

We will use the method of reduction of order to find a second solution
o(8) of (8). To this end, divide both sides of (8) by 1—¢? to obtain the
equivalent equation

dy, u & 2
at  1-pfdt 1y

2y=Q
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2.2 Linear equations with constant coefficients

Then, from (5)

2t
- dt
exp( f]-—tz ) Q-7 [_p2

u(t)= 2 = t2 = f2 ’

and

n(=tf 11_2’2 dr=—i( T +1)=-(1+1)

is a second solution of (8). Therefore,
y()=cit—c,(1+1%)
for some choice of constants c,, c,. (Notice that all solutions of (9) are con-
tinuous at 1= *1 even though the differential equation is not defined at
these points. Thus, it does not necessarily follow that the solutions of a dif-
ferential equation are discontinuous at a point where the differential equa-
tion is not defined—but this is often the case.) The constants ¢, and c, are
determined from the initial conditions
3=y(0)=—¢, and —-4=y'(0)=c,.

Hence, y(£)= —41+3(1+ 2.

EXERCISES

Find the general solution of each of the following equations

dzy & d’ dy
Solve each of the following initial-value problems.
dy & 1 —
3. 9}—2+6E+y—0, yO)=1, y'(0=0
4. 4~——4i"i+y=o- y(0)=0, y'(0)=3
d2 dt b ’

5. Suppose b2=4ac. Show that
yi()=e~Pm02 and  y, () =(1—15)e P!~/ 2
are solutions of (1) for every choice of ¢,

Solve the following initial-value problems.

dy _dy

6. F+2E+y=0; y@=Ly@=-1
d2
9———12% +4y=0; y(m)=0, y'(7)=2

8. Let g, b and c be positive numbers. Prove that every solution of the differential
equation agy” + by’ + ¢y =0 approaches zero as ¢ approaches infinity.
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2 Second-order linear differential equations

9. Here is an alternate and very elegant way of finding a second solution y,(t) of

M.
(a) Assume that b2=4gac. Show that

Lie™]=a(e™) +b(e") +ce"=a(r— r,)ze”

for ry=-5b/2a.
(b) Show that

(3/0r)Le™)=L[(3/0r)e™]=L[te" 1=2a(r—r))e" +at(r—r,)’e".

(c) Conclude from (a) and (b) that L[te”"]=0. Hence, y,(¢)=1te"" is a second
solution of (1).

Use the method of reduction of order to find the general solution of the
following differential equations.

d2 _ 2(t+1) ﬂ 2 _ _
10. . (P+2-1) dt (t2+2t—l)y_0 @)=+
2
1. ‘:if 4t9+(4t2 Dy=0 (y()=e"
12. (1—:2)-——21‘3; +2y=0 (O (H=9
dy | &
13. (1+t2)F—2tE+2y=0 (=0
dy _ dy
14. (1—:2);1}7 AU +6y=0 ()= 32-1)
2
15. (2t+1)1§—4(t+1)%+4y=0 Oi(D=1+1)
16. ¢ Q+t%+(t2—z =0 (l(t) S"”)

17. Given that the equation

d%
=5 —(1+31)7+3y =0

has a solution of the form e, for some constant ¢, find the general solution.
18. (a) Show that ¢ is a solution of Euler’s equation
2y"+aty’+ By=0, t>0
if 72+ (a— Dr+ B=0.

(b) Suppose that (a —1)>=4p. Using the method of reduction of order, show
that (Inf)#3~%/2 js a second solution of Euler’s equation.

Find the general solution of each of the following equations.

d dy d2y dy
2 2 =
19. ¢ +3t +y =0 20. ¢ % t 7 +y 0
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2.3 The nonhomogeneous equation

2.3 The nonhomogeneous equation

We turn our attention now to the nonhomogeneous equation
d’y
L[y]= o +p(t) c ta(y=2g(1) (1)

where the functions p (), ¢(¢) and g(7) are continuous on an open interval
a<t< B. An important clue as to the nature of all solutions of (1) is pro-
vided by the first-order linear equation

@
- T2y=—t )

The general solution of this equation is
oy 1
y(t)=ce"+3.

Now, observe that this solution is the sum of two terms: the first term, ce £
is the general solution of the homogeneous equation

&
T —-21=0 (3)

while the second term, 1, is a solution of the nonhomogeneous equation
(2). In other words every solution y(t) of (2) is the sum of a particular
solution, y(f)= 3, with a solution ce’ * of the homogeneous equation. A sim-
ilar situation prevalls in the case of second-order equations, as we now
show.

Theorem 5. Let y,(¥) and y,(t) be two linearly independent solutions of the
homogeneous equation

L[y]= ‘;f +p(0 2 +4(1)y =0 )

and let Y(t) be any particular solution of the nonhomogeneous equation (1).
Then, every solution y(t) of (1) must be of the form
y(@O)=c (D) + ey () +d(1)

for some choice of constants c|, c,.
The proof of Theorem 5 relies heavily on the following lemma.

Lemma 1. The difference of any two solutions of the nonhomogeneous equa-
tion (1) is a solution of the homogeneous equation (4).

Proor. Let y,(?) and y,(¢) be two solutions of (1). By the linearity of L,

L= ](0=L[]() - L[¥.]()=g(1)—g(1)=0.
Hence, () — ¢,(¢) is a solution of the homogeneous equation (4). O
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2 Second-order linear differential equations

We can now give a very simple proof of Theorem 5.

PROOF OF THEOREM 5. Let y(f) be any solution of (1). By Lemma 1, the
function ¢(¢)=y(#)—Y(f) is a solution of the homogeneous equation (4).
But every solution ¢(¢) of the homogeneous equation (4) is of the form
(= c,y () + c, (1), for some choice of constants c,, c,. Therefore,

y(@)=o()+y()=c y,(t)+ 20, () + ¥ (2). O

Remark. Theorem 5 is an extremely useful theorem since it reduces the
problem of finding all solutions of (1) to the much simpler problem of find-
ing just two solutions of the homogeneous equation (4), and one solution
of the nonhomogeneous equation (1).

Example 1. Find the general solution of the equation

d?
E+y=t. (5)

Solution. The functions y,(f)=cos? and y,(t)=sin¢ are two linearly inde-
pendent solutions of the homogeneous equation y” +y =0. Moreover, ()
= is obviously a particular solution of (5). Therefore, by Theorem S5,
every solution y(¢) of (5) must be of the form

y(t)=c,cost+c,sint+1.

Example 2. Three solutions of a certain second-order nonhomogeneous
linear equation are

Y (6)=1t, Y,(t)=t+ef, and Yy(t)=1+1+¢".

Find the general solution of this equation.
Solution. By Lemma 1, the functions

Yo() =y (H)=e’ and Y;(1) =y, () =1
are solutions of the corresponding homogeneous equation. Moreover, these

functions are obviously linearly independent. Therefore, by Theorem 5.
every solution y(¢#) of this equation must be of the form

y()=ce'+c,+t.

EXERCISES

1. Three solutions of a certain second-order nonhomogeneous linear equation arc

(=124 ()=r+e¥
and
Y3 () =1+ 2+2e%,
Find the general solution of this equaiicx.
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2. Three solutions of a certain second-order linear nonhomogeneous equation are
Yi()=1+e" () =1+1te"
and
Y3()=(r+1)e’+1
Find the general solution of this equation.
3. Three solutions of a second-order linear equation L[y]=g(?) are
(D) =3e'+e" Yy (1)=Te' +e”
and
Yy()=5e'+e " +e”.
Find the solution of the initial-value problem
Liyl=g:  »(O)=1, »y'(0)=2.
4. Let a, b and ¢ be positive constants. Show that the difference of any two solu-
tions of the equation
ay”+by'+cy=g(1)
approaches zero as ¢ approaches infinity.

5. Let ¢(¢) be a solution of the nonhomogeneous equation (1), and let ¢(r) be a
solution of the homogeneous equation (4). Show that ¢(z) + () is again a solu-
tion of (1).

2.4 The method of variation of parameters

In this section we describe a very general method for finding a particular
solution Y (7) of the nonhomogeneous equation

L= 2 +p0% +a0r =50 1)

once the solutions of the homogeneous equation
d’y dy

L[y]—-m—2+p(t)z+q(t)y—0 (2

are known. The basic principle of this method is to use our knowledge of

the solutions of the homogeneous equation to help us find a solution of the

nonhomogeneous equation.

Let y,(¢) and y,(¢) be two linearly independent solutions of the homoge-

neous equation (2). We will try to find a particular solution y(¢) of the
nonhomogeneous equation (1) of the form

Y(1) = w,(y (1) + u()yy(1); ©)
that is, we will try to find functions () and u,(¢) so that the linear combi-
nation u,(#)y,(#) + uy(£)y,(¢) is a solution of (1). At first glance, this
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2 Second-order linear differential equations

would appear to be a dumb thing to do, since we are replacing the problem
of finding one unknown function y/(#) by the seemingly harder problem of
finding two unknown functions u,(f) and u,(). However, by playing our
cards right, we will be able to find u,(r) and u,(7) as the solutions of two
very simple first-order equations. We accomplish this in the following
manner. Observe that the differential equation (1) imposes only one condi-
tion on the two unknown functions u,(f) and u,(¢). Therefore, we have a
certain “freedom” in choosing u,(f) and u,(¢). Our goal is to impose an
additional condition on u,(7) and u,(¢) which will make the expression
Llu,y,;+ u,y,] as simple as possible. Computing

d d
EHb(t): E[“O’l + uz)’z]

=[wyi+upyy ]+ [y, +usy,]
we see that d%y//dr?, and consequently L[y], will contain no second-order
derivatives of u, and u, if

y1(Dui (1) +y, (s (1) =0. “4)
This suggests that we impose the condition (4) on the functions u,(¢) and
u,(?). In this case, then,

Lly]=[uyi+ uz)’é],'*P(t)[“l)’i +uy3 ]+ q()[uyyy+uyp;]
=uiyi+uys+u [y +p()yi+a()r ]+ w[yi +p(1)ys+a(t)y,]
=uiyi+uy;

since both y () and y,(¢) are solutions of the homogeneous equation L[y]

=0. Consequently, Y(f)=u, y, + u, y, is a solution of the nonhomogeneous
equation (1) if u,(¢) and u,(¢) satisfy the two equations

yi(Oui () +,(Huy()=0
Y1(Ou () +y3(Duy () =g(2).

Multiplying the first equation by yj(f), the second equation by y,(f), and
subtracting gives

(712502172 ()]s ()= —8(1) y2(0),
while multiplying the first equation by y(#), the second equation by y,(?),
and subtracting gives
[21()¥5() = ¥5 () y2(0) Jua () = 8 (1) y1 (1),

Hence,

L an ()
R N T R 7 A TP

Finally, we obtain u,(#) and u,(¢) by integrating the right-hand sides of (5).

)
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2.4 The method of variation of parameters

Remark. The general solution of the homogeneous equation (2) is

y(O) =,y (1) + 3, (0).
By letting ¢, and c, vary with time, we obtain a solution of the nonhomo-

geneous equation. Hence, this method is known as the method of variation
of parameters.

Example 1.
(a) Find a particular solution y(¢) of the equation
d2y
pr +y=tant (6)

on the interval —7/2<t<7/2.

(b) Find the solution y () of (6) which satisfies the initial conditions y (0)=
1, y'(0)=1.

Solution.

(a) The functions y,(#)=cost and y,(¢)=sint are two linearly independent
solutions of the homogeneous equation y” +y =0 with

W[ y1uy2](0)=y,y5—y y,=(cost)cost —(—sint)sint=1.
Thus, from (5),
uy(t)= —tanssins and u)(7)=tantcost. @)

Integrating the first equation of (7) gives

.2
u,(t)=—ftantsintdt=—f%sttdt

_fcos 1= dt—smt—1n|sect+tant|
cost

=sin¢—In(sect +tant), — % < t<%

while integrating the second equation of (7) gives

uz(t)=ftantcostdt=fsintdt= —cost.

Consequently,
(1) =cost[sins—In(secs +tans) | +sins(—cos?)
= —costIn(sect +tant)

is a particular solution of (6) on the interval — 7 /2 <t <z /2.
(b) By Theorem 5 of Section 2.3,

y(t)=c,cost+c,sint—costIn(sect +tant)

for some choice of constants ¢,, ¢,. The constants ¢, and ¢, are determined
from the initial conditions

l=y(0)=c¢, and 1=y'(0)=c,—1.
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2 Second-order linear differential equations

Hence, ¢,=1, ¢,=2 and
y(t)=cost+2sint—costIn(sect +tant).

Remark. Equation (5) determines u,(¢) and u,() up to two constants of in-
tegration. We usually take these constants to be zero, since the effect of
choosing nonzero constants is to add a solution of the homogeneous equa-
tion to (7).

EXERCISES

Find the general solution of each of the following equations.
d2

1. d—:+y=sect, —%<t<%
2, ‘2—22—4%+4y=te2’
3. 2%—3d—+y (£*+ De!

. ‘;f 3%+2y=te3‘+l

Solve each of the following initial-value problems.
5. 3y"+4y'+y=(sinne™"; y(0)=1, y'(0)=0

6.y +4y' +dy=15/%"2; y(0)=y'(0)=0

7.y =3y +=Vi+1; y0)=y(0)=0

8.y —y=f(0); y©=y'(©0)=0

Warning. It must be remembered, while doing Problems 3 and 5, that
Equation (5) was derived under the assumption that the coefficient of y”
was one,

9. Find two linearly independent solutions of t>y” —2y =0 of the form y(f)=1".
Using these solutions, find the general solution of £2y” —2y =,

10. One solution of the equation
Y +p()y +4q(t)y=0 *)

is (1+ ¢)%, and the Wronskian of any two solutions of (*) is constant. Find the
general solution of

y'+p()y' tq()y=1+t

11. Find the general solution of y” +(1/4t%)y = fcost, t >0, given that y,(f)= Vi
is a solution of the homogeneous equation.
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2.5 The method of judicious guessing

12. Find the general solution of the equation

ay  u & 2

TS _y=1+22
ar 1+ di 1427

13. Show that sect+ tan¢ is positive for —w /2 <t <7 /2.

2.5 The method of judicious guessing

A serious disadvantage of the method of variation of parameters is that the
integrations required are often quite difficult. In certain cases, it is usually
much simpler to guess a particular solution. In this section we will establish
a systematic method for guessing solutions of the equation

d’y &
ad2+bz+cy——g(t) €))

where a, b and ¢ are constants, and g(¢) has one of several special forms.
Consider first the differential equation

d2
Lly]= a—y+b%+cy=ao+a,t+...+a,,t". (2)

We seek a function y/(¢) such that the three functions ay”, by’ and ¢ add
up to a given polynomial of degree n. The obvious choice for ¢ (¢) is a
polynomial of degree n. Thus, we set

Y(t)=Ag+A;t+...+4,." 3)
and compute
LI¥J(1)=ad" (1) + by (1) + e (1)
=a[24,+ ...+ n(n—1)A,1" 2]+ b[ A+ ... +nd, "]
+e[do+ A+ +A,1"]
=cA, 1"+ (cA,_+nbA,) " '+ ... +(cAdy+bA,+2a4,).
Equating coefficients of like powers of ¢ in the equation
L[y](=apg+ait+...+a,r"
gives
cA,=a,, cA,_+nbA,=a,_,,...,cAy+bA,+2ad,=a, 4
The first equation determines A, =a, /¢, for ¢#0, and the remaining equa-
tions then determine 4, _,,...,A, successively. Thus, Equation (1) has a
particular solution y/(#) of the form (3), for ¢#0.
We run into trouble when ¢ =0, since then the first equation of (4) has

no solution A,. This difficulty is to be expected though, for if c=0, then
L[y]=ay” + by’ is a polynomial of degree n— 1, while the right hand side
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2 Second-order linear differential equations

of (2) is a polynomial of degree n. To guarantee that ay” + by’ is a poly-
nomial of degree n, we must take ¢ as a polynomial of degree n+ 1. Thus,
we set

Y()=t[Ag+ A1+ ... +A,1"]. (5)

We have omitted the constant term in (5) since y = constant is a solution of
the homogeneous equation ay” + by’ =0, and thus can be subtracted from
Y(?). The coefficients 4,, 4,,...,4, are determined uniquely (see Exercise
19) from the equation

ay’+bY =ay+at+...+a,n"
if b#0.
Finally, the case 5= c=0 is trivial to handle since the differential equa-

tion (2) can then be integrated immediately to yield a particular solution
Y(1) of the form

2 n+2

11 aot +a1t3+ N a,t
D==|—S+sa+.+———|.
=41 77 %73 (n+1)(n+2)

Summary. The differential equation (2) has a solution y(¢) of the form

Ag+ A1+ .. + A", c#0
Y()y={t(Ag+Ap+...+A,1"), ¢=0b#0,
(Ag+Ajt+ ... +A,t"), c=b=0

Example 1. Find a particular solution ¢/(7) of the equation
2
L[y]=%+j—);+y=t2. (6)
Solution. We set Y(1)= Ay+ A1+ A,t* and compute
LIy](0)y=¢" () + ¢ (1) +¢(1)

=2A4,+(A,+24,0)+ Ay+ At + A,12

=(Ag+ A, +24,) + (A, +24,)t+ A%
Equating coefficients of like powers of ¢ in the equation L[y](7)=t? gives

A,=1, A,+24,=0
and
Ay+A,+24,=0.

The first equation tells us that 4, =1, the second equation then tells us that
A= —2, and the third equation then tells us that 4,=0. Hence,

Y(t)=—2t++¢

is a particular solution of (6).

158



2.5 The method of judicious guessing

Let us now re-do this problem using the method of variation of parame-
ters. It is easily verified that

yi()=e /*cosV31/2 and y,(t)=e /*sinV31/2
are two solutions of the homogeneous equation L[y]=0. Hence,
Y(t)=u,(t)e”""*cos V3 1 /2+ uy(t)e~/*sin V3 1 /2
is a particular solution of (6), where

— 1% sm\/_t/2 = =2 (22603 1/2d
()= f R0 —\/gfte sinV31¢/2dt

and

t%e="%cos V3 ¢ 2
uy ()= f e eosV3 1/ r=—2 ftze’/zcos\/?t/2dt.
W[ yi2](t) V3
These integrations are extremely difficult to perform. Thus, the method of
guessing is certainly preferrable, in this problem at least, to the method of
variation of parameters.
Consider now the differential equation
dy . dy

Liy]= a——+b—3t-+cy=(ao+a1t+...+a,,t")e"". 7

We would like to remove the factor e* from the right-hand side of (7), so
as to reduce this equation to Equation (2). This is accomplished by setting
y(8)=e*v(¢). Then,

y'=e(v'+av) and y’=e*(v”+2av' +a’)
so that

L[y]=e[av" +(2aa+b)v +(aa®+ ba+ c)o].
Consequently, y(¢)=e*v(z) is a solution of (7) if, and only if,

a%——+(2a +b) 7+ (a0t +bak Jo=agtat+ . taln (8)

In finding a particular solution v(z) of (8), we must distinguish as to
whether (i) aa’®+ ba+ ¢ #0; (i) aa®+ ba+ c=0, but 2aa+b+0; and (iii)
both aa?+ ba+ ¢ and 2aa + b=0. The first case means that « is not a root
of the characteristic equation

ar*+ br+c=0. 9)

In other words, e* is not a solution of the homogeneous equation L[ y]=0.
The second condition means that « is a single root of the characteristic
equation (9). This implies that e* is a solution of the homogeneous equa-
tion, but te* is not. Finally, the third condition means that a is a double
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root of the characteristic equation (9), so that both e* and te* are solu-
tions of the homogeneous equation. Hence, Equation (7) has a particular
solution §(f) of the form (i) Y()=(4p+ ... +4,t")e%, if e* is not a solu-
tion of the homogeneous equation; (ii) Y(f)=t(Ay+ ... + 4,1")e®, if e* is
a solution of the homogeneous equation but te® is not; and (iii) y(¢)=
tY(Ag+ ... + A,1")e™ if both e and te® are solutions of the homogeneous
equation.

Remark. There are two ways of computing a particular solution y(¢) of (7).
Either we make the substitution y = ¢*v and find v(¢) from (8), or we guess
a solution y(¢) of the form e* times a suitable polynomial in ¢. If a is a
double root of the characteristic equation (9), or if n>2, then it is advis-
able to set y =e®p and then find v(¢) from (8). Otherwise, we guess y(?)
directly.

Example 2. Find the general solution of the equation

d2

F_“Q Fayp=(l+14 ...+ ), (10)
Solution. The characteristic equation r>—4r+4=0 has equal roots r;=r,
=2. Hence, y,(f)=e* and y,(t)=te* are solutions of the homogeneous
equation y” —4y’+4y =0. To find a particular solution ¢(¢) of (10), we set
y = e%v. Then, of necessity,

d (%
ar

Integrating this equation twice, and setting the constants of integration
equal to zero gives

=1+i+24... +7.

t2 t3 t29
U(t)-—l—.z“i' 2—5 +...+ 7829
Hence, the general solution of (10) is

_ 2t 2t 2:’_2_ t29
y(t)=ce“+cyte’’ +e [1.2+ TP 29]
/2 2
[c,+c2t+ S REERE T ]

It would be sheer madness (and a terrible waste of paper) to plug the ex-
pression
Y1) =1 (Ag+ Ayt + ...+ Appt™)e
into (10) and then solve for the coefficients 4y, 4,,...,4;.
Example 3. Find a particular solution /() of the equation
dy _dy

L[y] = —d—2 —3—d-t- +2y=(1 +t)e3'.
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Solution. In this case, e*' is not a solution of the homogeneous equation

y” =3y’ +2y=0. Thus, we set y(£)=(A4,+ A,t)e*. Computing
L{y]()=9"=3¢'+2¢
= e[ (94 +64,+94,1) =334+ A, +3A4,1)+2(A,+ A1) |
=e[(24,+34,)+24,1]
and cancelling off the factor e* from both sides of the equation

L[¥](r)=(1+1)e*,
gives
24,1+ (2Ay+34,)=1+1.
This implies that 24,=1 and 24,+34,=1. Hence, 4,=1, A,=—; and
Y(=(—3+1/2)e.
Finally, we consider the differential equation

dy & n coswt
Lly]= a—— +bE +cey=(ag+at+... +a,t")X { sinot (11)
We can reduce the problem of finding a particular solution y/(¢) of (11) to
the simpler problem of finding a particular solution of (7) with the aid of

the following simple but extremely useful lemma.

Lemma 1. Let y(t)=u(t)+iv(t) be a complex-valued solution of the equa-
tion
dy  d
Lly]= a—gtbgto= =g(1)=g, (1) +ig,(1) (12)

where a, b and c are real. This means, of course, that
alu"(t)+ iv"(t)] + b[ u'(t)+ iv’(t)] + c[ u(t)+ io(t)] =g,(?) +ig,(¢).

(13)
Then, L[u](r)=g,(?) and L[v])(t)=g,(?).
Proor. Equating real and imaginary parts in (13) gives
au”(t)+bu'(t)+ cu(r)=g, (1)
and
av” (1) +bv' (1) + co(1)=g,(1). O
Now, let ¢(#)=u(?)+ iv(r) be a particular solution of the equation
d2y dy n\,iwt
a;+bz+cy—(ao+...+ant ) (14)

The real part of the right-hand side of (14) is (ay+ ... + a,t")coswt, while
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the imaginary part is (ag+ ... + a,t")sinwt. Hence, by Lemma 1
u(r)=Re{o(1)}
is a solution of
ay"+by'+cy=(ay+ ... +a,t")coswt
while
o()=Im{¢(1)}
is a solution of
ay”"+by'+cy=(ap+... +a,t")sinwt.

Example 4. Find a particular solution y(¢) of the equation

d% )
L[y]=;;+4y=sm2t. (15)

Solution. We will find /() as the imaginary part of a complex-valued solu-
tion ¢(f) of the equation

d?y .
L[y]=ﬁ+4y=e2”. (16)

To this end, observe that the characteristic equation r>+4=0 has complex
roots r= *+2i, Therefore, Equation (16) has a particular solution ¢(¢) of the
form ¢(f)= Ayte?. Computing

o' (t)=Ay(1+2it)e* and ¢"(t)=Ay(4i—41)e*"
we see that

L{¢](1)=9¢"(1) +4(t)=4idge*".
Hence, Ay=1/4i=—i/4 and

=-—£2i’=—i—t i S1 =.£ _L
o(?) ke 4(cos2t+zs1n2t) 4s1n2t t4cos2t.

Therefore, Y(£)=Im{¢(¢)} = —(¢/4)cos2t is a particular solution of (15).

Example 5. Find a particular solution ¢(¢) of the equation
d?y
— +4y =cos2t. 17)
Y (

Solution. From Example 4, ¢(1)=(¢/4)sin2¢—i(t/4)cos2s is a complex-
valued solution of (16). Therefore,

Y(1)=Re{o(1)} = % sin2¢
is a particular solution of (17).
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Example 6. Find a particular solution ¢(7) of the equation

d2
Lly]= d)2)+2g =te'cost. (18)

Solution. Observe that fe’cost is the real part of te('*?*, Therefore, we can
find Y(¢) as the real part of a complex-valued solution ¢(¢) of the equation

d2y dy .
Lly]= " — 2 +y=te!*", (19)

To this end, observe that 1+ is not a root of the characteristic equation
r?+2r+1=0. Therefore, Equation (19) has a particular solution ¢(¢) of the
form ¢(r)=(A4,+ A4,r)e'*?. Computing L[¢]=¢" +2¢ +¢, and using the
identity

1+ +2(1+i)+1=[(1+i)+1] = 2+i)
we see that
[@+i)Ast+2+i)dg+22+0)4, ] =
Equating coefficients of like powers of 7 in this equation gives
(2+i)4,=1
and
(2+)A4,+24,=0.

This implies that 4, =1/(2+i)? and 4,= —2/(2+i)’, so that

-2 41 _
2+ @+ i)

e(l + i)l.

¢(1)=

After a little algebra, we find that
e .
#(= 1551 [(15¢—4)cost+ (201 —22)sin¢]
+i[(22—201)cost + (15— 4)sint] }.
Hence,

Y(f)=Re{o(1)} = 125[(15!—4)cost+(20t—22)smt]

Remark. The method of judicious guessing also applies to the equation

2 n
Liy]= a? +b%+cy= > pi(t)e®’ (20)
j=1

where the p;(1),j=1,...,n are polynomials in . Let y;(¢) be a particular
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solution of the equation
L[y]=pj(t)e°‘i’, j=1,...,n.

Then, Y(1)=2"7_,¢;(?) is a solution of (20) since

30 $iy1- $ noer

Jj=1

Liy]=L

Thus, to find a particular solution of the equation
y'+y +y=e'+ tsint
we find particular solutions y,(¢) and y,(¢) of the equations
y'+y'+y=e' and y"+y'+y=tsint

respectively, and then add these two solutions together.

EXERCISES

Find a particular solution of each of the following equations.

1y +3y=r>—1 2. y"+4y +4y=te™

3y —y=t% 4.y " +y' +y=1+1+1*

5. y"+2y'+y=e"! 6. y"+5y +dy=1r%"

7. y" +4y =1rsin2¢ 8. y" =6y’ +9y=031"—5t%e*

9. y” =2y’ +5y =2cost 10. y” =2y’ +5y =2(cos2f)e’

11. y"+y'— 6y =sint + te* 12. y" +y' + 4y =2+ (2t +3)(1 +cos?)
13, y" =3y +2y=e'+ ¥ 4. y"+2y'=1+12+e” ¥

15. y”" +y =costcos2t 16. y” +y=costcos2tcos3t.

17. (a) Show that cos’ws=1Re{e¥“! +3¢™'),
Hint: coswt=(e™ + e~ ") /2.
(b) Find a particular solution of the equation

10y” + 0.2y’ + 1000y = 5+ 20 cos® 10¢
18. (a) Let L[y]=y"—2r;y'+r%y. Show that
L[e’lto(t)] =e"(1).
(b) Find the general solution of the equation
Y =6y +9y =132

19. Let (r)=1t(Ag+ ... + 4,t"), and assume that b5=0. Show that the equation
a)’+bY'=ay+ ... +a,t” determines A4, ...,A4, uniquely.
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2.6 Mechanical vibrations

2.6 Mechanical vibrations

Consider the case where a small object of mass m is attached to an elastic
spring of length /, which is suspended from a rigid horizontal support (see
Figure 1). (An elastic spring has the property that if it is stretched or com-
pressed a distance A/ which is small compared to its natural length /, then
it will exert a restoring force of magnitude kAl. The constant k is called
the spring-constant, and is a measure of the stiffness of the spring.) In
addition, the mass and spring may be immersed in a medium, such as oil,
which impedes the motion of an object through it. Engineers usually refer
to such systems as spring-mass-dashpot systems, or as seismic instruments,
since they are similar, in principle, to a seismograph which is used to detect
motions of the earth’s surface.

LLLLL 1ty 1
e
S S

Figure 1

Spring-mass-dashpot systems have many diverse applications. For ex-
ample, the shock absorbers in our automobiles are simple spring-mass-
dashpot systems. Also, most heavy gun emplacements are attached to such
systems so as to minimize the “recoil” effect of the gun. The usefulness of
these devices will become apparent after we set up and solve the differen-
tial equation of motion of the mass m.

In calculating the motion of the mass m, it will be convenient for us to
measure distances from the equilibrium position of the mass, rather than
the horizontal support. The equilibrium position of the mass is that point
where the mass will hang at rest if no external forces act upon it. In
equilibrium, the weight mg of the mass is exactly balanced by the restoring
force of the spring. Thus, in its equilibrium position, the spring has been
stretched a distance A/, where kK A/=mg. We let y =0 denote this equi-
librium position, and we take the downward direction as positive. Let y(¢)
denote the position of the mass at time ¢. To find y(¢), we must compute
the total force acting on the mass m. This force is the sum of four separate
forces W, R, D and F.
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2 Second-order linear differential equations

(i) The force W=mg is the weight of the mass pulling it downward.
This force is positive, since the downward direction is the positive y direc-
tion.

(ii) The force R is the restoring force of the spring, and it is proportional
to the elongation, or compression, A/ + y of the spring. It always acts to re-
store the spring to its natural length. If A/+y >0, then R is negative, so
that R= — k(Al/+y), and if A/+y <0, then R is positive, so that R=
—k(Al+y). In either case,

= —k(Al+y).

(iii) The force D is the damping, or drag force, which the medium exerts
on the mass m. (Most media, such as oil and air, tend to resist the motion
of an object through it.) This force always acts in the direction opposite the
direction of motion, and is usually directly proportional to the magnitude
of the velocity dy /dt. If the velocity is positive; that is, the mass is moving
in the downward direction, then D= — cdy/dt, and if the velocity is nega-
tive, then D= —cdy /dt. In either case,

D=—cdy/dr.

(iv) The force F is the external force applied to the mass. This force is
directed upward or downward, depending as to whether F is positive or
negative. In general, this external force will depend explicitly on time.

From Newton’s second law of motion (see Section 1.7)

2

d’y
m—=W+R+D+F
dr?

=mg—k(AI+y)-—c% + F(?)

&y
= — -—C—
by dt
since mg =k Al. Hence, the position y(¢) of the mass satisfies the second-
order linear differential equation
dy &
m—-+c—+ky=F(t 1
e+l =F() Q)
where m, ¢ and k are nonnegative constants. We adopt here the mks system
of units so that F is measured in newtons, y is measured in meters, and ¢ is
measured in seconds. In this case, the units of k are N /m, the units of ¢ are
N-s/m, and the units of m are kilograms (N -s?/m)

+ F (1),

(a) Free vibrations:

We consider first the simplest case of free undamped motion. In this case,
Equation (1) reduces to
d?y d?y
m—+ky=0 or — +wiy=0 2
7 ky ar 4 2
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2.6 Mechanical vibrations

where w}=k/m. The general solution of (2) is
y(t)y=acoswyt+ bsinwyt. (3)

In order to analyze the solution (3), it is convenient to rewrite it as a single
cosine function. This is accomplished by means of the following lemma.

Lemma 1. Any function y(t) of the form (3) can be written in the simpler
form
y(1)=Rcos(wyt — ) (4)
where R=\a*+b* and §=tan"'b/a.

Proor. We will verify that the two expressions (3) and (4) are equal. To
this end, compute

R cos(wyt — 8§ )= R coswyt cosd + Rsinwyt sind

and observe from Figure 2 that Rcosd=a and Rsind=b. Hence,

R cos(wyt — 8) = acoswyt + bsinwyt. O
(2
\Y)
X
, Jo/ b
% Cd
)
a
Figure 2

In Figure 3 we have graphed the function y = R cos(wyt — 8). Notice that
y(2) always lies between — R and + R, and that the motion of the mass is
periodic—it repeats itself over every time interval of length 27 /w, This
type of motion is called simple harmonic motion; R is called the amplitude
of the motion, § the phase angle of the motion, T,=27/w, the natural
period of the motion, and w,= V k/m the natural frequency of the sys-
tem.

(b) Damped free vibrations:

If we now include the effect of damping, then the differential equation
governing the motion of the mass is
dy &

m—‘—it—2+03t—+ky=0. (5)

The roots of the characteristic equation mr?+ cr+ k=0 are

_ —c+Vct-dkm _ —c—\Vc*—4km
ry= o= and r,= > .

167



2 Second-order linear differential equations

Figure 3. Graph of y(f)= Rcos(wgt —§)

Thus, there are three cases to consider, depending as to whether ¢2—4km
is positive, negative or zero.
(i) ¢*~4km>0. In this case both r, and r, are negative, and every solu-
tion y(r) of (5) has the form
y(t)=ae" +be'”.
(ii) c*—4km=0. In this case, every solution y(¢) of (5) is of the form
y(t)=(a+ bt)e =/,
(iit) c*—4km <O0. In this case, every solution y(¢) of (5) is of the form
\/ _ 2
y(t)=e‘“/2"’[acosut+bsinut], #=_4_k2rgn__c__.

The first two cases are referred to as overdamped and critically damped,
respectively. They represent motions in which the originally displaced mass
creeps back to its equilibrium position. Depending on the initial condi-
tions, it may be possible to overshoot the equilibrium position once, but no
more than once (see Exercises 2-3). The third case, which is referred to as
an underdamped motion, occurs quite often in mechanical systems and
represents a damped vibration. To see this, we use Lemma 1 to rewrite the
function

y(f)=e=/?m[ gcospt+ bsinpt]

in the form
y(t)=Re~/?cos(ut—8).

The displacement y oscillates between the curves y = + Re~ /2" and thus

represents a cosine curve with decreasing amplitude, as shown in Figure 4.
Now, observe that the motion of the mass always dies out eventually if

there is damping in the system. In other words, any initial disturbance of
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~—
-~
\‘_

- \ y__Re-ct/zm

Figure 4. Graph of Re™ /2" cos(ut— 8)

the system is dissipated by the damping present in the system. This is one
reason why spring-mass-dashpot systems are so useful in mechanical sys-
tems: they can be used to damp out any undesirable disturbances. For ex-
ample, the shock transmitted to an automobile by a bump in the road is
dissipated by the shock absorbers in the car, and the momentum from the
recoil of a gun barrel is dissipated by a spring-mass-dashpot system
attached to the gun.

(c) Damped forced vibrations:

If we now introduce an external force F(¢)= Fycoswt, then the differential
equation governing the motion of the mass is

d2
mgz +cg + ky = Fycoswt. (6)

Using the method of judicious guessing, we can find a particular solution
Y(1) of (6) of the form

Ky
(k — mw?)’ + c2w?

¥(1)=

[ (k—mw?*)coswr + cwsinawt |

F, 1/2
= ° [(k—mw2)2+ Czwz] cos(wt — §)

(k- mwz)2 + cw?

3 Fycos(wt—§)
= [(k_mw2)2+czw2:|]/2 (7)

where tand=cw/(k —mw?). Hence, every solution y(¢) of (6) must be of
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the form
Fycos(wt—9)

y(O)=¢()+¥(r)=o(1)+ ; 72 (8)
[(k —mw?) + czwz]
where ¢(¢) is a solution of the homogeneous equation
dy &
mﬁ +Cz+ky_0' 9)

We have already seen though, that every solution y = ¢(¢) of (9) approaches
zero as ¢t approaches infinity. Thus, for large ¢, the equation y(#)=y(¢) de-
scribes very accurately the position of the mass m, regardless of its initial
position and velocity. For this reason, y(¢) is called the steady state part of
the solution (8), while ¢(¢) is called the transient part of the solution.

(d) Forced free vibrations:

We now remove the damping from our system and consider the case of
forced free vibrations where the forcing term is periodic and has the form
F(t)= Fycoswt. In this case, the differential equation governing the motion
of the mass m is

d’ Fy
}t—2+w§y=;coswt, wi=k/m. (10)
The case w# w, is uninteresting; every solution y(#) of (10) has the form
. Fy
y(1)=c,coswyt + c,sinwyt + S Coswl,
m(wf—w?)

and thus is the sum of two periodic functions of different periods. The in-
teresting case is when w=w,; that is, when the frequency w of the external
force equals the natural frequency of the system. This case is called the res-

onance case, and the differential equation of motion for the mass m is
d’ Fy
— +wiy=— coswyl. 11
dt2 Oy m 0 ( )

We will find a particular solution ¢(¢) of (11) as the real part of a
complex-valued solution ¢(¢) of the equation

d2y 2 FO iw
W+w0y=ze of, (12)

Since e™ is a solution of the homogeneous equation y” +wiy =0, we
know that (12) has a particular solution ¢(¢)= Ate’, for some constant 4.
Computing

¢+ wip=2iwyAe "
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we see that
F, —iF,
A= 0_ "0
2iwg m  2muw,
Hence,
— iFyt .
o(1)= ey (coswyt + i sinwyt?)
Fot  Fyt
= —i— t
e sinwyf — i ey COS Wy
is a particular solution of (12), and
Fyt
Y(r)=Re{¢(t)} = T, sin wo!

is a particular solution of (11). Consequently, every solution y () of (11) is
of the form

) Fyt
t)=c¢,coswyl+ ¢, SInwyl +
y(r)=c 0 2 ol T S

sinwgy? (13)
o

for some choice of constants c,,c,.

Now, the sum of the first two terms in (13) is a periodic function of
time. The third term, though, represents an oscillation with increasing am-
plitude, as shown in Figure 5. Thus, the forcing term Fjcoswt, if it is in res-
onance with the natural frequency of the system, will always cause un-
bounded oscillations. Such a phenomenon was responsible for the collapse
of the Tacoma Bridge, (see Section 2.6.1) and many other mechanical
catastrophes.

y

A

\//\ .
\/\/\/

Figure 5. Graph of f(¢f)=Atsinwyt

171



2 Second-order linear differential equations

EXERCISES

1.

It is found experimentally that a 1 kg mass stretches a spring 49,/320 m. If the
mass is pulled down an additional 1/4 m and released, find the amplitude,
period and frequency of the resulting motion, neglecting air resistance (use
g=9.8 m/s?).

. Lety(f)=Ae"" + Be'?, with |4|+|B|+0.

(a) Show that y(¢) is zero at most once.
(b) Show that y’(¢) is zero at most once.

. Let y(£)=(A + Br)e”, with |4|+|B|+0.

(a) Show that y(¢) is zero at most once.
(b) Show that y’(¢) is zero at most once.

. A small object of mass 1 kg is attached to a spring with spring constant 2N /m.

This spring-mass system is immersed in a viscous medium with damping
constant 3 N-s/m. At time =0, the mass is lowered 1/2 m below its
equilibrium position, and released. Show that the mass will creep back to its
equilibrium position as ¢ approaches infinity.

. A small object of mass 1 kg is attached to a spring with spring-constant 1 N/m

and is immersed in a viscous medium with damping constant 2 N-s/m. At time
¢t =0, the mass is lowered 1/4 m and given an initial velocity of 1 m/s in the
upward direction. Show that the mass will overshoot its equilibrium position
once, and then creep back to equilibrium.

. A small object of mass 4 kg is attached to an elastic spring with spring-constant

64 N /m, and is acted upon by an external force F(r) = A4 cos’wt. Find all values
of w at which resonance occurs.

. The gun of a U.S. M60 tank is attached to a spring—mass—dashpot system with

spring-constant 100a> and damping constant 200a, in their appropriate units.
The mass of the gun is 100 kg. Assume that the displacement y(r) of the gun
from its rest position after being fired at time ¢ =0 satisfies the initial-value
problem

100y”+200ay’+ 1000’y = 0; y(0) = 0, y'(0) =100 m/s.

It is desired that one second later, the quantity y% +(y’)? be less than .01. How
large must « be to guarantee that this is so? (The spring-mass—dashpot
mechanism in the M60 tanks supplied by the U.S. to Israel are critically
damped, for this situation is preferable in desert warfare where one has to fire
again as quickly as possible).

. A spring-mass—dashpot system has the property that the spring constant & is 9

times its mass m, and the damping constant ¢ is 6 times its mass. At time ¢ =0,
the mass, which is hanging at rest, is acted upon by an external force F(¢)=
(3sin37) N. The spring will break if it is stretched an additional 5 m from its
equilibrium position. Show that the spring will not break if m=1/5 kg.

. A spring—mass—dashpot system with m =1, k =2 and ¢ =2 (in their respective

units) hangs in equilibrium. At time ¢ = 0, an external force F(¢t) =7 —t N acts
for a time interval . Find the position of the mass at anytime ¢ > 7.
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2.6 Mechanical vibrations

10. A 1 kg mass is attached to a spring with spring constant k = 64 N /m. With the
mass on the spring at rest in the equilibrium position at time ¢ = 0, an external
force F(¢)=(3t) N is applied until time 7, = 77 /16 seconds, at which time it is
removed. Assuming no damping, find the frequency and amplitude of the
resulting oscillation.

11. A 1 kg mass is attached to a spring with spring constant £ =4 N /m, and hangs
in equilibrium. An external force F(¢) =(1+ ¢ +sin2¢) N is applied to the mass
beginning at time = 0. If the spring is stretched a length (1/2+ #/4) m or
more from its equilibrium position, then it will break. Assuming no damping
present, find the time at which the spring breaks.

12. A small object of mass 1 kg is attached to a spring with spring constant k =1
N/m. This spring-mass system is then immersed in a viscous medium with
damping constant c¢. An external force F(t)=(3—cost) N is applied to the
system. Determine the minimum positive value of ¢ so that the magnitude of the
steady state solution does not exceed 5 m.

13. Determine a particular solution y/(#) of my” + ¢y’ + ky = Fycoswt, of the form

Y(2)= A cos(wt — ¢). Show that the amplitude 4 is a maximum when w?=w}

-1/ m)?. This value of  is called the resonant frequency of the system. What
happens when w? < 1(c/m)*?

2.6.1 The Tacoma Bridge disaster

On July 1, 1940, the Tacoma Narrows Bridge at Puget Sound in the state
of Washington was completed and opened to traffic. From the day of its
opening the bridge began undergoing vertical oscillations, and it soon was
nicknamed “Galloping Gertie.” Strange as it may seem, traffic on the
bridge increased tremendously as a result of its novel behavior. People
came from hundreds of miles in their cars to enjoy the curious thrill of
riding over a galloping, rolling bridge. For four months, the bridge did a
thriving business. As each day passed, the authorities in charge became
more and more confident of the safety of the bridge—so much so, in fact,
that they were planning to cancel the insuranee policy on the bridge.
Starting at about 7:00 on the morning of November 7, 1940, the bridge
began undulating persistently for three hours. Segments of the span were
heaving periodically up and down as much as three feet. At about 10:00
a.m., something seemed to snap and the bridge began oscillating wildly. At
one moment, one edge of the roadway was twenty-eight feet higher than
the other; the next moment it was twenty-eight feet lower than the other
edge. At 10:30 a.m. the bridge began cracking, and finally, at 11:10 a.m.
the entire bridge came crashing down. Fortunately, only one car was on
the bridge at the time of its failure. It belonged to a newspaper reporter
who had to abandon the car and its sole remaining occupant, a pet dog,
when the bridge began its violent twisting motion. The reporter reached
safety, torn and bleeding, by crawling on hands and knees, desperately
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clutching the curb of the bridge. His dog went down with the car and the
span—the only life lost in the disaster.

There were many humorous and ironic incidents associated with the col-
lapse of the Tacoma Bridge. When the bridge began heaving violently, the
authorities notified Professor F. B. Farquharson of the University of
Washington. Professor Farquharson had conducted numerous tests on a
simulated model of the bridge and had assured everyone of its stability.
The professor was the last man on the bridge. Even when the span was tilt-
ing more than twenty-eight feet up and down, he was making scientific ob-
servations with little or no anticipation of the imminent collapse of the
bridge. When the motion increased in violence, he made his way to safety
by scientifically following the yellow line in the middle of the roadway.
The professor was one of the most surprised men when the span crashed
into the water.

One of the insurance policies covering the bridge had been written by a
local travel agent who had pocketed the premium and had neglected to re-
port the policy, in the amount of $800,000, to his company. When he later
received his prison sentence, he ironically pointed out that his embezzle-
ment would never have been discovered if the bridge had only remained
up for another week, at which time the bridge officials had planned to
cancel all of the policies.

A large sign near the bridge approach advertised a local bank with the
slogan “as safe as the Tacoma Bridge.” Immediately following the collapse
of the bridge, several representatives of the bank rushed out to remove the
billboard.

After the collapse of the Tacoma Bridge, the governor of the state of
Washington made an emotional speech, in which he declared “We are
going to build the exact same bridge, exactly as before.” Upon hearing
this, the noted engineer Von Karman sent a telegram to the governor stat-
ing “If you build the exact same bridge exactly as before, it will fall into
the exact same river exactly as before.”

The collapse of the Tacoma Bridge was due to an aerodynamical phe-
nomenon known as stall flutter. This can be explained very briefly in the
following manner. If there is an obstacle in a stream of air, or liquid, then
a “vortex street” is formed behind the obstacle, with the vortices flowing
off at a definite periodicity, which depends on the shape and dimension of
the structure as well as on the velocity of the stream (see Figure 1). As a
result of the vortices separating alternately from either side of the obstacle,
it is acted upon by a periodic force perpendicular to the direction of the
stream, and of magnitude Fjcoswt. The coefficient F;, depends on the
shape of the structure. The poorer the streamlining of the structure; the
larger the coefficient Fy,, and hence the amplitude of the force. For exam-
ple, flow around an airplane wing at small angles of attack is very smooth,
so that the vortex street is not well defined and the coefficient F is very
small. The poorly streamlined structure of a suspension bridge is another
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Figure 1

matter, and it is natural to expect that a force of large amplitude will be set
up. Thus, a structure suspended in an air stream experiences the effect of
this force and hence goes into a state of forced vibrations. The amount of
danger from this type of motion depends on how close the natural
frequency of the structure (remember that bridges are made of steel, a
highly elastic material) is to the frequency of the driving force. If the two
frequencies are the same, resonance occurs, and the oscillations will be de-
structive if the system does not have a sufficient amount of damping. It has
now been established that oscillations of this type were responsible for the
collapse of the Tacoma Bridge. In addition, resonances produced by the
separation of vortices have been observed in steel factory chimneys, and in
the periscopes of submarines.

The phenomenon of resonance was also responsible for the collapse of
the Broughton suspension bridge near Manchester, England in 1831. This
occurred when a column of soldiers marched in cadence over the bridge,
thereby setting up a periodic force of rather large amplitude. The
frequency of this force was equal to the natural frequency of the bridge.
Thus, very large oscillations were induced, and the bridge collapsed. It is
for this reason that soldiers are ordered to break cadence when crossing a
bridge.

Epilog. The father of one of my students is an engineer who worked on the
construction of the Bronx Whitestone Bridge in New York City. He
informed me that the original plans for this bridge were very similar to those
of the Tacoma Bridge. These plans were hastily redrawn following the
collapse of the Tacoma Bridge.

2.6.2 Electrical networks

We now briefly study a simple series circuit, as shown in Figure 1 below.
The symbol E represents a source of electromotive force. This may be a
battery or a generator which produces a potential difference (or voltage),
that causes a current I to flow through the circuit when the switch S is
closed. The symbol R represents a resistance to the flow of current such as
that produced by a lightbulb or toaster. When current flows through a coil
of wire L, a magnetic field is produced which opposes any change in the
current through the coil. The change in voltage produced by the coil is pro-
portional to the rate of change of the current, and the constant of propor-
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Figure 1. A simple series circuit

tionality is called the inductance L of the coil. A capacitor, or condenser,
indicated by C, usually consists of two metal plates separated by a material
through which very little current can flow. A capacitor has the effect of re-
versing the flow of current as one plate or the other becomes charged.

Let Q (¢) be the charge on the capacitor at time ¢. To derive a differen-
tial equation which is satisfied by Q (¢) we use the following.

Kirchoff’s second law: In a closed circuit, the impressed voltage equals the
sum of the voltage drops in the rest of the circuit.
Now,

(i) The voltage drop across a resistance of R ohms equals RI (Ohm’s
law).
(i) The voltage drop across an inductance of L henrys equals L(dI/dr).
(iii) The voltage drop across a capacitance of C farads equals Q/C.

Hence,
_rdl 14
E()=L% +RI+Z,
and since I(¢)=dQ (t)/dt, we see that
d’Q ag 0
L—'d't2—+R'—dT+E—E(t). (1)

Notice the resemblance of Equation (1) to the equation of a vibrating
mass. Among the similarities with mechanical vibrations, electrical circuits
also have the property of resonance. Unlike mechanical systems, though,
resonance is put to good use in electrical systems. For example, the tuning
knob of a radio is used to vary the capacitance in the tuning circuit. In this
manner, the resonant frequency (see Exercise 13, Section 2.6) is changed
until it agrees with the frequency of one of the incoming radio signals. The
amplitude of the current produced by this signal will be much greater than
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that of all other signals. In this way, the tuning circuit picks out the desired
station.

EXERCISES

1.

Suppose that a simple series circuit has no resistance and no impressed voltage.
Show that the charge Q on the capacitor is periodic in time, with frequency
wo=V1/LC . The quantity V1/LC is called the natural frequency of the
circuit.

. Suppose that a simple series circuit consisting of an inductor, a resistor and a

capacitor is open, and that there is an initial charge Qy=10"% coulombs on the
capacitor. Find the charge on the capacitor and the current flowing in the circuit
after the switch is closed for each of the following cases.

(a) L=0.5 henrys, C=1077 farads, R =1000 ohms

(b) L=1 henry, C=10"* farads, R =200 ohms

(c) L=2 henrys, C=10"¢ farads, R =2000 ohms

. A simple series circuit has an inductor of 1 henry, a capacitor of 107¢ farads,

and a resistor of 1000 ohms. The initial charge on the capacitor is zero. If a 12
volt battery is connected to the circuit, and the circuit is closed at r=0, find the
charge on the capacitor 1 second later, and the steady state charge.

. A capacitor of 1073 farads is in series with an electromotive force of 12 volts

and an inductor of 1 henry. At =0, both Q and I are zero.

(a) Find the natural frequency and period of the electrical oscillations.

(b) Find the maximum charge on the capacitor, and the maximum current flow-
ing in the circuit.

. Show that if there is no resistance in a circuit, and the impressed voltage is of

the form E,sinwt, then the charge on the capacitor will become unbounded as
t—o if w=V1/LC . This is the phenomenon of resonance.

. Consider the differential equation

LO+ RO+ % = Egcoswt. (i)

We find a particular solution ¢(#) of (i) as the real part of a particular solution

(1) of

LO+ RO+ —g— = Ege’", (ii)
(a) Show that
. Ey i
iwp(t) = 7 e’

(b) The quantity Z= R+ i(wL—1/wC) is known as the complex impedance of
the circuit. The reciprocal of Z is called the admittance, and the real and im-
aginary parts of 1/Z are called the conductance and susceptance. De-
termine the admittance, conductance and susceptance.

. Consider a simple series circuit with given values of L, R and C, and an im-

pressed voltage E,sinwt. For which value of w will the steady state current be a
maximum?
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2.7 A model for the detection of diabetes

Diabetes mellitus is a disease of metabolism which is characterized by too
much sugar in the blood and urine. In diabetes, the body is unable to burn
off all its sugars, starches, and carbohydrates because of an insufficient
supply of insulin. Diabetes is usually diagnosed by means of a glucose
tolerance test (GTT). In this test the patient comes to the hospital after an
overnight fast and is given a large dose of glucose (sugar in the form in
which it usually appears in the bloodstream). During the next three to five
hours several measurements are made of the concentration of glucose in
the patient’s blood, and these measurements are used in the diagnosis of
diabetes. A very serious difficulty associated with this method of diagnosis
is that there is no universally accepted criterion for interpreting the results
of a glucose tolerance test. Three physicians interpreting the results of a
GTT may come up with three different diagnoses. In one case recently, in
Rhode Island, one physician, after reviewing the results of a GTT, came
up with a diagnosis of diabetes. A second physician declared the patient to
be normal. To settle the question, the results of the GTT were sent to a
specialist in Boston. After examining these results, the specialist concluded
that the patient was suffering from a pituitary tumor.

In the mid 1960’s Drs. Rosevear and Molnar of the Mayo Clinic and
Ackerman and Gatewood of the University of Minnesota discovered a
fairly reliable criterion for interpreting the results of a glucose tolerance
test. Their discovery arose from a very simple model they developed for
the blood glucose regulatory system. Their model is based on the following
simple and fairly well known facts of elementary biology.

1. Glucose plays an important role in the metabolism of any vertebrate
since it is a source of energy for all tissues and organs. For each individual
there is an optimal blood glucose concentration, and any excessive devia-
tion from this optimal concentration leads to severe pathological condi-
tions and potentially death.

2. While blood glucose levels tend to be autoregulatory, they are also in-
fluenced and controlled by a wide variety of hormones and other metabo-
lites. Among these are the following.

(i) Insulin, a hormone secreted by the 8 cells of the pancreas. After we
eat any carbohydrates, our G.I. tract sends a signal to the pancreas to
secrete more insulin. In addition, the glucose in our blood directly stimu-
lates the B cells of the pancreas to secrete insulin. It is generally believed
that insulin facilitates tissue uptake of glucose by attaching itself to the im-
permeable membrane walls, thus allowing glucose to pass through the
membranes to the center of the cells, where most of the biological and
chemical activity takes place. Without sufficient insulin, the body cannot
avail itself of all the energy it needs.
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(ii) Glucagon, a hormone secreted by the a cells of the pancreas. Any ex-
cess glucose is stored in the liver in the form of glycogen. In times of need
this glycogen is converted back into glucose. The hormone glucagon in-
creases the rate of breakdown of glycogen into glucose. Evidence collected
thus far clearly indicates that hypoglycemia (low blood sugar) and fasting
promote the secretion of glucagon while increased blood glucose levels
suppress its secretion.

(iii) Epinephrine (adrenalin), a hormone secreted by the adrenal medulla.
Epinephrine is part of an emergency mechanism to quickly increase the
concentration of glucose in the blood in times of extreme hypoglycemia.
Like glucagon, epinephrine increases the rate of breakdown of glycogen
into glucose. In addition, it directly inhibits glucose uptake by muscle
tissue; it acts directly on the pancreas to inhibit insulin secretion; and it
aids in the conversion of lactate to glucose in the liver.

(iv) Glucocorticoids, hormones such as cortisol which are secreted by the
adrenal cortex. Glucocorticoids play an important role in the metabolism
of carbohydrates.

(v) Thyroxin, a hormone secreted by the thyroid gland. This hormone
aids the liver in forming glucose from non-carbohydrate sources such as
glycerol, lactate and amino acids.

(vi) Growth hormone (somatotropin), a hormone secreted by the anterior
pituitary gland. Not only does growth hormone affect glucose levels in a
direct manner, but it also tends to “block” insulin. It is believed that
growth hormone decreases the sensitivity of muscle and adipose membrane
to insulin, thereby reducing the effectiveness of insulin in promoting
glucose uptake.

The aim of Ackerman et al was to construct a model which would ac-
curately describe the blood glucose regulatory system during a glucose
tolerance test, and in which one or two parameters would yield criteria for
distinguishing normal individuals from mild diabetics and pre-diabetics.
Their model is a very simplified one, requiring only a limited number of
blood samples during a GTT. It centers attention on two concentrations,
that of glucose in the blood, labelled G, and that of the net hormonal con-
centration, labelled H. The latter is interpreted to represent the cumulative
effect of all the pertinent hormones. Those hormones such as insulin which
decrease blood glucose concentrations are considered to increase H, while
those hormones such as cortisol which increase blood glucose concentra-
tions are considered to decrease H. Now there are two reasons why such a
simplified model can still provide an accurate description of the blood
glucose regulatory system. First, studies have shown that under normal, or
close to normal conditions, the interaction of one hormone, namely in-
sulin, with blood glucose so predominates that a simple “lumped parame-
ter model” is quite adequate. Second, evidence indicates that normogly-
cemia does not depend, necessarily, on the normalcy of each kinetic
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2 Second-order linear differential equations

mechanism of the blood glucose regulatory system. Rather, it depends on
the overall performance of the blood glucose regulatory system, and this
system is dominated by insulin-glucose interactions.

The basic model is described analytically by the equations

&~ F (GH)+J (1) (1)
2 _F,(G.H). )

The dependence of F, and F, on G and H signify that changes in G and H
are determined by the values of both G and H. The function J (¢) is the ex-
ternal rate at which the blood glucose concentration is being increased.
Now, we assume that G and H have achieved optimal values G, and H, by
the time the fasting patient has arrived at the hospital. This implies that
F\(Gy, Hy)=0 and F,(Gy, Hy)=0. Since we are interested here in the devia-
tions of G and H from their optimal values, we make the substitution

g=G~G0, h=H_H0.
Then,

dg

dh
o =F2(Go+ g, Ho+ h).
Now, observe that

dF, (Go, Hy) dF, (Go, Hy)

3¢ 8T T am te

Fi(Go+g,Hot h)=F,(Go, Hy) +

and
OF, (G Hy)  OF,(Gy Hy)
where e, and e, are very small compared to g and 4. Hence, assuming that

G and H deviate only slightly from G, and H,, and therefore neglecting
the terms e, and e,, we see that

dg OF (GoH,) OF, (G, Hy)
i Ye g+ 3H h+J (1) 3)
dh _ AF,(Go, Hy) IF, (Go, Hy)
a= a6 &t am M “)
Now, there are no means, a priori, of determining the numbers
0F; (Go.Hy) OF,(Gp,Hy) OF,(Gp,Hy) nd dF,(Go, Hy)
oG’ oH ' G 2 oH

Fy(Go+ g, Hy+h)=F, (G, Hy) +

However, we can determine their signs. Referring to Figure 1, we see that
dg / dt is negative for g>0 and h =0, since the blood glucose concentration
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G.I. Tract
Y J
> Glucose Pool Tissue
Liver G > Uptake
\ - //’
- /
N N o ———————
5 e -
Y \\ 7
7 \ ,/
Endocrines -~ // Hormone Pool _ Hormone
¢ " @ H > Metabolism

Figure 1. Simplified model of the blood glucose regulatory system

will be decreasing through tissue uptake of glucose and the storing
of excess glucose in the liver in the form of glycogen. Consequently
0F(Gy, Hy)/9G must be negative. Similarly, 9F,(Gy, Hy)/0H is negative
since a positive value of 4 tends to decrease blood glucose levels by facili-
tating tissue uptake of glucose and by increasing the rate at which glucose
is converted to glycogen. The number 3F,(G,, H,)/9G must be positive
since a positive value of g causes the endocrine glands to secrete those
hormones which tend to increase H. Finally, 0F,(Gy, Hy)/0H must be
negative, since the concentration of hormones in the blood decreases
through hormone metabolism.
Thus, we can write Equations (3) and (4) in the form

dg

'Zt‘="‘mlg“m2h+-](’) (5)
dh
Et—=—m3h+m4g (6)

where m,, m,, m,, and m, are positive constants. Equations (5) and (6) are
two first-order equations for g and A. However, since we only measure the
concentration of glucose in the blood, we would like to remove the vari-
able A. This can be accomplished as follows: Differentiating (5) with re-
spect to ¢ gives

d’g dg dh . dJ

Substituting for dh/dt from (6) we obtain that

d’g dg dJ
—dt—2=~mlgt—+m2m3h——m2m4g+z-. (7)

Next, observe from (5) that myh=(—dg/dt)— m, g+ J (¢). Consequently,
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g(1) satisfies the second-order linear differential equation

d2
+(m +m3) +(m my+mym,) g=myJ + —— dJ

ar dr’
We rewrite this equation in the form
d’s | dg
F+2ad +w0g S(t) (8)

where a=(m,+ m;)/2, wi=mmy+ mym,, and S(1)=myJ +dJ /dt.

Notice that the right-hand side of (8) is identically zero except for the
very short time interval in which the glucose load is being ingested. We will
learn to deal with such functions in Section 2.12. For our purposes here, let
t=0 be the time at which the glucose load has been completely ingested.
Then, for t> 0, g(¢) satisfies the second-order linear homogeneous equa-
tion ,

d’g dg
;t—+2a7+w0g 0. 9
This equation has positive coefficients. Hence, by the analysis in Section
2.6, (see also Exercise 8, Section 2.2.2) g(r) approaches zero as ¢ ap-
proaches infinity. Thus our model certainly conforms to reality in pre-
dicting that the blood glucose concentration tends to return eventually to
its optimal concentration.

The solutions g(¢) of (9) are of three different types, depending as to
whether a2 —w? is positive, negative, or zero. These three types, of course,
correspond to the overdamped, critically damped and underdamped cases
discussed in Section 2.6. We will assume that a® — w3 is negative; the other
two cases are treated in a similar manner. If a>— w} <0, then the character-
istic equation of Equation (9) has complex roots. It is easily verified in this
case (see Exercise 1) that every solution g(¢) of (9) is of the form

g()=Ae “cos(wt—98), wr=wi-ak (10
Consequently,
G(t)=Gy+ Ae “cos(wt—5). (1)

Now there are five unknowns Gy, 4, a, wy, and 8 in (11). One way of de-
termining them is as follows. The patient’s blood glucose concentration be-
fore the glucose load is ingested is G,. Hence, we can determine G, by
measuring the patient’s blood glucose concentration immediately upon his
arrival at the hospital. Next, if we take four additional measurements G,,
G,, G;, and G, of the patient’s blood glucose concentration at times ¢, ,,
13, and t,, then we can determine 4, a, wy, and § from the four equations

Gj=GO+Ae_"9cos(wtj—8), j=12734.

A second, and better method of determining G, 4, &, wy, and § is to take n
measurements G,,G,,...,G, of the patient’s blood glucose concentration at
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times ¢,1,,...,t,. Typically n is 6 or 7. We then find optimal values for G,,
A, a, wy, and § such that the least square error
n
E= 2 [Gj— G()—Ae_""f'cos(wtj—8)]2
j=1

is minimized. The problem of minimizing £ can be solved on a digital
computer, and Ackerman et al (see reference at end of section) provide a
complete Fortran program for determining optimal values for Gy, 4, a, w,
and 8. This method is preferrable to the first method since Equation (11) is
only an approximate formula for G (¢). Consequently, it is possible to find
values Gy, 4, a, wy, and & so that Equation (11) is satisfied exactly at four
points ¢, t,, 5, and ¢, but yields a poor fit to the data at other times. The
second method usually offers a better fit to the data on the entire time in-
terval since it involves more measurements.

In numerous experiments, Ackerman et al observed that a slight error in
measuring G could produce a very large error in the value of «. Hence, any
criterion for diagnosing diabetes that involves the parameter a is unreli-
able. However, the parameter w,, the natural frequency of the system, was
relatively insensitive to experimental errors in measuring G. Thus, we may
regard a value of w, as the basic descriptor of the response to a glucose
tolerance test. For discussion purposes, it is more convenient to use the
corresponding natural period 7,=27/w, The remarkable fact is that data
from a variety of sources indicated that a value of less than four hours for
T, indicated normalcy, while appreciably more than four hours implied mild
diabetes.

Remark 1. The usual period between meals in our culture is about 4 hours.
This suggests the interesting possibility that sociological factors may also
play a role in the blood glucose regulatory system.

Remark 2. We wish to emphasize that the model described above can only
be used to diagnose mild diabetes or pre-diabetes, since we have assumed
throughout that the deviation g of G from its optimal value G, is small.
Very large deviations of G from G, usually indicate severe diabetes or di-
abetes insipidus, which is a disorder of the posterior lobe of the pituitary
gland.

A serious shortcoming of this simplified model is that it sometimes
yields a poor fit to the data in the time period three to five hours after in-
gestion of the glucose load. This indicates, of course, that variables such as
epinephrine and glucagon play an important role in this time period. Thus
these variables should be included as separate variables in our model,
rather than being lumped together with insulin. In fact, evidence indicates
that levels of epinephrine may rise dramatically during the recovery phase
of the GTT response, when glucose levels have been lowered below fasting
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q(t)
Ve |

Figure 2. Graph of g(¢) if a®—w3>0

levels. This can also be seen directly from Equation (9). If a2 — w2 >0, then
g(?) may have the form described in Figure 2. Note that g(¢) drops very
rapidly from a fairly high value to a negative one. It is quite conceivable,
therefore, that the body will interpret this as an extreme emergency and
thereby secrete a large amount of epinephrine.

Medical researchers have long recognized the need of including epi-
nephrine as a separate variable in any model of the blood glucose regula-
tory system. However, they were stymied by the fact that there was no reli-
able method of measuring the concentration of epinephrine in the blood.
Thus, they had to assume, for all practical purposes, the the level of epi-
nephrine remained constant during the course of a glucose tolerance test.
This author has just been informed that researchers at Rhode Island
Hospital have devised an accurate method of measuring the concentration
of epinephrine in the blood. Thus we will be able to develop and test more
accurate models of the blood glucose regulatory system. Hopefully, this
will lead to more reliable criteria for the diagnosis of diabetes.

Reference

E. Ackerman, L. Gatewood, J. Rosevear, and G. Molnar, Blood glucose regulation
and diabetes, Chapter 4 in Concepts and Models of Biomathematics, F. Heinmets,
ed., Marcel Dekker, 1969, 131-156.

EXERCISES
1. Derive Equation (10).

2. A patient arrives at the hospital after an overnight fast with a blood glucose con-
centration of 70 mg glucose/100 ml blood (mg glucose/100 ml blood =
milligrams of glucose per 100 milliliters of blood). His blood glucose concentra-
tion 1 hour, 2 hours, and 3 hours after fully absorbing a large amount of glucose
is 95, 65, and 75 mg glucose/100 ml blood, respectively. Show that this patient is
normal. Hint: In the underdamped case, the time interval between two succes-
sive zeros of G — Gy exceeds one half the natural period.
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According to a famous diabetologist, the blood glucose concentration of a
nondiabetic who has just absorbed a large amount of glucose will be at or
below the fasting level in 2 hours or less. Exercises 3 and 4 compare the
diagnoses of this diabetologist with those of Ackerman et al.

3. The deviation g(f) of a patient’s blood glucose concentration from its optimal
concentration satisfies the differential equation (d%/dt?)+2a(dg/d)+ a’g=0
immediately after he fully absorbs a large amount of glucose. The time ¢ is
measured in minutes, so that the units of a are reciprocal minutes. Show that
this patient is normal according to Ackerman et al, if a > # /120 (min), and that
this patient is normal according to the famous diabetologist if

g'(0)< — (5 +«) £(0).

4. A patient’s blood glucose concentration G (¢) satisfies the initial-value problem

a6, 1 dG 1
df* 20 (min) 4 2500 (min)’

_ 1
2500 (min)”
G (0) =150 mg glucose /100 ml blood,

1 1-4¢'%/5
* 300 1= e18/5

75 mg glucose /100 ml blood;

G'(0)=—aG (0)/(min); a

immediately after he fully absorbs a large amount of glucose. This patient’s opti-
mal blood glucose concentration is 75 mg glucose /100 ml blood. Show that this
patient is a diabetic according to Ackerman et al, but is normal according to the
famous diabetologist.

2.8 Series solutions

We return now to the general homogeneous linear second-order equation

LIy ]=P() 22+ 0% +R()y=0 1)

with P (f) unequal to zero in the interval a < ¢ < . It was shown in Section
2.1 that every solution y(¢) of (1) can be written in the form y(¢)=c,y(¢)
+ ¢, y,(1), where y,(¢) and y,(?) are any two linearly independent solutions
of (1). Thus, the problem of finding all solutions of (1) is reduced to the
simpler problem of finding just two solutions. In Section 2.2 we handled
the special case where P, Q, and R are constants. The next simplest case is
when P (¢), Q (¢), and R (¢) are polynomials in z. In this case, the form of
the differential equation suggests that we guess a polynomial solution y(7)
of (1). If y(¢) is a polynomial in ¢, then the three functions P (#)y”(?),
Q(1)y'(¥), and R(r)y(?) are again polynomials in ¢. Thus, in principle, we
can determine a polynomial solution y(7) of (1) by setting the sums of the

185



2 Second-order linear differential equations

coefficients of like powers of ¢ in the expression L[y](¢) equal to zero. We
illustrate this method with the following example.

Example 1. Find two linearly independent solutions of the equation

dy | &
=— —21——2y=0. 2
Liy] 0 2tdt 2y=0 (2)
Solution. We will try to find 2 polynomial solutions of (2). Now, it is not
obvious, a priori, what the degree of any polynomial solution of (2) should
be. Nor is it evident that we will be able to get away with a polynomial of
finite degree. Therefore, we set

[>¢]
y()=ag+ajt+a’+...= 3 a,"
n=0
Computing
d 0
7); =a,+2a,t+3a,t*+ ... = Eona,,t”_'
and
d’y s _
l =2a,+6ast+ ... = ’Eon(n— Da,t"2,
we see that y(¢) is a solution of (2) if
Lly](t)= X n(n—1)a,1""2=2t 3, na, 1" ' =23 a,t"
n=0 n=0 n=0
[ee] [s <] [> ]
= > n(n—1a,""2-2 3 na,t"-2 Y a,t"=0. (3)
n=0 n=0 n=0

Our next step is to rewrite the first summation in (3) so that the expo-
nent of the general term is n, instead of n—2. This is accomplished by in-
creasing every n underneath the summation sign by 2, and decreasing the
lower limit by 2, that is,

0

o0
> n(n—Da, "= > (n+2)(n+1)a, ,t"
n=0 n=—2
(If you don’t believe this, you can verify it by writing out the first few
terms in both summations. If you still don’t believe this and want a formal
proof, set m=n—2. When n is zero, m is —2 and when » is infinity, m is
infinity. Therefore

el

> n(n—1a,i" 2= § (m+2)(m+1a,, ,t",

n=0 m= -2

and since m is a dummy variable, we may replace it by n.) Moreover, ob-
serve that the contribution to this sum from n=—2 and n=—1 is zero
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since the factor (n+2)(n+ 1) vanishes in both these instances. Hence,

0

2 n(n——l)a,,t"‘2= § (n+2)(n+1)a,, ,t"

n=0 n=0

and we can rewrite (3) in the form

=} 0 [>2]
> (n+2)(n+1)a, ,t"—2 Y na,t"-2 > a,t"=0. 4)
n=0 n=0 n=0
Setting the sum of the coefficients of like powers of ¢ in (4) equal to zero
gives
(n+2)(n+1)a,, ,—2na,—2a,=0
so that
2(n+1)a, 2a,
: ()

2T D) (nt 1) n+2

Equation (5) is a recurrence formula for the coefficients agy,a,,a,,a,,....
The coefficient a, determines the coefficient a, . ,. Thus, a, determines a,
through the relation a,=24a,/2=a,; a,, in turn, determines a, through the
relation a,=2a,/(2+2)=ay/2; and so on. Similarly, a, determines aj
through the relation a;=2a,/(2+ 1)=2a,/3; a,, in turn, determines as
through the relation as=2a;/(3+2)=4a,/3-5; and so on. Consequently,
all the coefficients are determined uniquely once a, and a, are prescribed.
The values of a, and a, are completely arbitrary. This is to be expected,
though, for if
y(t)=ay+at+a,t’+...

then the values of y and y’ at =0 are g, and a, respectively. Thus, the
coefficients a; and a, must be arbitrary until specific initial conditions are
imposed on y.

To find two solutions of (2), we choose two different sets of values of g,
and a,. The simplest possible choices are (i) a,=1,a,=0; (ii) a,=0, a,=1.

6] ap=1, a,;=0.

In this case, all the odd coefficients a,,a;,as,... are zero since a;=2a,/3=
0, as=2a;/5=0, and so on. The even coefficients are determined from the
relations

2a, 1

1 -
27 %776 T 23
and so on. Proceeding inductively, we find that

1 1

gp=57——=—7.
723---n n!

1 24,
B=a,=1, =73 =

- 2 l 2

187



2 Second-order linear differential equations

is one solution of (2).

(i1) ay,=0, a, =1
In this case, all the even coefficients are zero, and the odd coefficients are
determined from the relations

g=_2 2% 22 28 222
W3 T3 BT Tsy YT TSy
and so on. Proceeding inductively, we find that
a =2
3.5 2n+1)
Thus,
23 %5 N Jny2n+1
N=t+"—+-F7+..= ) ——
y2(1) 3 735 > 3.5 2n+1)

is a second solution of (2).

Now, observe that y,(¢) and y,(f) are polynomials of infinite degree,
even though the coefficients P (f)=1, Q ()= —2¢, and R(f)= —2 are poly-
nomials of finite degree. Such polynomials are called power series. Before
proceeding further, we will briefly review some of the important properties
of power series.

1. An infinite series
o0

y(O)=agta,(t—tg) +ay(t—1)'+ ... = ann(t— )" (6)
n=
is called a power series about ¢ = ¢,,.

2. All power series have an interval of convergence. This means that there
exists a nonnegative number p such that the infinite series (6) converges
for |t —ty| <p, and diverges for |t —#,| > p. The number p is called the
radius of convergence of the power series.

3. The power series (6) can be differentiated and integrated term by term,
and the resultant series have the same interval of convergence.

4. The simplest method (if it works) for determining the interval of conver-
gence of the power series (6) is the Cauchy ratio test. Suppose that the
absolute value of g, .,/ a, approaches a limit A as n approaches infinity.
Then, the power series (6) converges for |7 — ¢y <1/A, and diverges for
[t—to| >1/A.

5. The product of two power series >, :°_ 0% (t—tp)" and > f_ob,,(t— to)
is again a power series of the form D *_ c,(f— )", with ¢, =agb,+
a,b,_,+ ... +a,b, The quotient

ag+at+at’+ ...
bo+ byt + b2+ ...
of two power series is again a power series, provided that b,+0.
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6. Many of the functions f(¢) that arise in applications can be expanded in
power series; that is, we can find coefficients ay,4a,,4,,... so that
o0
f(t)y=ag+a(t—t)+a,(1—15)+ ... = 20""(’ —1)". (7
n=
Such functions are said to be analytic at t = t,, and the series (7) is called
the Taylor series of f about = ¢,. It can easily be shown that if f admits
such an expansion, then, of necessity, a, = f®(t,)/n!, where f®(f)=
d"f(e)/de".

7. The interval of convergence of the Taylor series of a function f(¢), about
ty, can be determined directly through the Cauchy ratio test and other
similar methods, or indirectly, through the following theorem of complex
analysis.

Theorem 6. Let the variable t assume complex values, and let z, be the point
closest to t, at which f or one of its derivatives fails to exist. Compute the
distance p, in the complex plane, between t, and z,,. Then, the Taylor series
of f about t, converges for |t —t,| <p, and diverges for |t —t,| > p.

As an illustration of Theorem 6, consider the function f(¢)=1/(1+1¢2).
The Taylor series of f about ¢t =0 is

1
1+¢2

and this series has radius of convergence one. Although the function
(1+¢?)!is perfectly well behaved for ¢ real, it goes to infinity when ¢ = =,
and the distance of each of these points from the origin is one.

A second application of Theorem 6 is that the radius of convergence of
the Taylor series about t =0 of the quotient of two polynomials a(z) and
b(1), is the magnitude of the smallest zero of b(¢).

At this point we make the important observation that it really wasn’t
necessary to assume that the functions P(7), Q(¢), and R (¢) in (1) are poly-
nomials. The method used to solve Example 1 should also be applicable to
the more general differential equation

=1—2+* =15+ ...,

L[y]=P(t)Z—;+Q(t)%+R(t)y=0

where P(¢), Q(¢), and R(t) are power series about ¢,. (Of course, we would
expect the algebra to be much more cumbersome in this case.) If

P(t)=po+p (t—t))+..., Q(=gotq,(t—15)+ ...,
R()=ro+r(t—ty)+...

and y(t)=a,+a,(t —ty)+ ..., then L[ y](¢) will be the sum of three power
series about ¢t =1,. Consequently, we should be able to find a recurrence
formula for the coefficients a, by setting the sum of the coefficients of like
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powers of ¢ in the expression L{y](¢) equal to zero. This is the content of
the following theorem, which we quote without proof.

Theorem 7. Let the functions Q(t)/P(t) and R(t)/ P(t) have convergent
Taylor series expansions about t=ty, for |t — to| <p. Then, every solution
y(2) of the differential equation

d’y dy
P(t)— + — +R(t)y=0 8
023+ G +R () ®)
is analytic at t=t,, and the radius of convergence of its Taylor series ex-
pansion about t =t is at least p. The coefficients a,,a,,..., in the Taylor
series expansion
2
y()=apg+a,(t—ty)+a,(r—1)"+... 9

are determined by plugging the series (9) into the differential equation (8)
and setting the sum of the coefficients of like powers of t in this expression
equal to zero.

Remark. The interval of convergence of the Taylor series expansion of any
solution y (¢) of (8) is determined, usually, by the interval of convergence of
the power series Q (¢)/ P (¢) and R (f)/ P(¢), rather than by the interval of
convergence of the power series P(#), Q(¢), and R (?). This is because the
differential equation (8) must be put in the standard form

dy

22 4p()% +a()y=0

whenever we examine questions of existence and uniqueness.

Example 2.
(a) Find two linearly independent solutions of

_dy . 3 &1

L — + —+ =0. 10
7] ar 1+ di 142 (10
(b) Find the solution y(r) of (10) which satisfies the initial conditions y(0)
=2, y'(0)=3.
Solution.

(a) The wrong way to do this problem is to expand the functions 3¢/(1 + 3
and 1/(1+ ¢?) in power series about ¢ =0. The right way to do this problem
is to multiply both sides of (10) by 1+ 2 to obtain the equivalent equation
dy . &
= 2 — — =
Liy]l=(1+¢ )dt2 +3tdt +y=0.
We do the problem this way because the algebra is much less cumbersome
when the coefficients of the differential equation (8) are polynomials than
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when they are power series. Setting y()= > °._.a,¢", we compute

n=0%n

o0 oo [c ]
L[y]()=(1+2) 3 n(n—1)a,t" 2+3t 3, na,t" '+ 2 a,t"
n=0

n=0 n=0

i

M8 i M3

0
n(n—1)a,t" "2+ 2 [n(n- 1)+3n+1]a,,t"

n=0

(n+2)(n+l)an+2t + 2 (n+1)a,t".

n=0

3
Il

Setting the sum of the coefficients of like powers of ¢ equal to zero gives
(n+2)(n+ )a,,,+(n+1)%a,=0. Hence,
(n+l)2a,l (n+1a,
MT T I+ ) nt2
Equation (11) is a recurrence formula for the coefficients a,,as,... in terms

of ay and a,. To find two linearly independent solutions of (10), we choose
the two simplest cases (i) gy=1, a¢;=0; and (ii) g;=0, a,=1.

(1) a0=l, a1=0.

(11)

In this case, all the odd coefficients are zero since a;= —2a,/3=0, as=
—4a,/5=0, and so on. The even coefficients are determined from the rela-
tions

o S 1 3@ 13 4% 135
2 2 2’ 4 4 2:4° 6 6 2:4-6
and so on. Proceeding inductively, we find that
(2 —1) L,1:3:-(2n—1)
-y ) )
Thus,
2 13, - (2n-1)
yl(t)—l—j 2.4 4 2(—1) 2 B rE— (12)

is one solution of (10). The ratio of the (n+ I)st term to the nth term of
yi(0) is

3 '-(2n——1)(2n+1)t2"+2x 2 —Q2n+1)22
27+ (n+1)! 13- Qn=1>  2n+1)

and the absolute value of this quantity approaches ¢? as n approaches in-
finity. Hence, by the Cauchy ratio test, the infinite series (12) converges for
|t]< 1, and diverges for |¢]> 1.

(ii) ay=0, a =1
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In this case, all the even coefficients are zero, and the odd coefficients are
determined from the relations

a2 de 24 08 246
BT TTy BTTTE T3 T 3.5-7
and so on. Proceeding inductively, we find that

2:4--.2n  _  (=1)"2n!

- __1 n = M
Agpe1=(=1) 3:5-++(2n+1)  3:5---(2n+1)
Thus,

2,244 o (=Dt
N=t—%+ o=y — 13
yZ() =3 35t 2 5. (2n+1) (13)

n=0
is a second solution of (10), and it is easily verified that this solution, too,
converges for |¢|< 1, and diverges for |¢|> 1. This, of course, is not very
surprising, since the Taylor series expansions about t=0 of the functions
3t/(1+ %) and 1/(1+ t?) only converge for |#|< 1.
(b) The solution y,() satisfies the initial conditions y(0)=1, y’(0)=0, while
y,(?) satisfies the initial conditions y(0)=0, y’(0)=1. Hence y(r)=2y,() +
3yy(0).

Example 3. Solve the initial-value problem

L[y]= d2 tzdy+21y =0; y(0)=1, y'(0)=0.

Solution. Setting y(1)= 3, *_ a,t", we compute

o] 0 o0
L y]()= X n(n=1)a,t" 2+ 12 3 na, " '+2t 3 a,t"

n=0 n=0 n=0
o0 oC o0
= > n(n—1Da,t" "2+ 3 na"t'+2 > a"*!
n=0 n=0 n=0
o o0
= > n(n—1a,t"" 2+ 3 (n+2)a,t"*".
n=0 n=0

Our next step is to rewrite the first summation so that the exponent of the
general term is n+1 instead of n—2. This is accomplished by increasing
every n underneath the summation sign by 3, and decreasing the lower
limit by 3; that is,

[}

0
> n(n—1)a,t" 2= 2 (n+3)(n+2)a,,+3t"+'

n=0

2 (n+3)(n+2)a, "

nm=—1
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Therefore,

L[y](n= 2 (n+3)(n+2)a,, "'+ 2(n+2)a !

n=-—1 n=

=2a,+ 2 (n+3)(n+2)a,, "'+ 2 (n+2)a, "t
n=0 n=0

Setting the sums of the coefficients of like powers of ¢ equal to zero gives
2a,=0, and (n+3)(n+2)a,, ;+(n+2)a,=0; n=0,1,2,...

Consequently,
a

n
a,=0, and Gp3=~ 7335 n>0. (14)
The recurrence formula (14) determines a, in terms of a,, a, in terms of
a,, as in terms of a,, and so on. Since a,=0, we see that as,ag,a,,... are all
zero, regardless of the values of a, and a,. To satify the initial conditions,
we set ay=1 and a,=0. Then, from (14), a,,a,,4,,,... are all zero, while
a——@——l a__ﬁ_l __%__ 1
3 3 3’ 6 6 3.6’
and so on. Proceeding inductively, we find that

-n" (=" (=1

9= 3630 31-2---n_ 3m!

t6 (__l)t3n
()= 3 3.6 36 E BETTE

By Theorem 7, this series converges for all ¢, since the power series r* and
2t obviously converge for all 7. (We could also verify this directly using the
Cauchy ratio test.)

Hence,

Example 4. Solve the initial-value problem
d’ dy
=(12_— hail A . A =0- — ’ —
Ll y]=(#*=21) 7 +5(1—-1) = +3y=0; y(1)=7, y'(1)=3. (15

Solution. Since the initial conditions are given at =1, we will express the
coefficients of the differential equation (15) as polynomials in (¢—1), and
then we will find y(¢) as a power series centered about r=1. To this end,
observe that

P=2t=1(t=2)=[(t=1)+1][(r=1)=1]=(r—1)"- 1.

Hence, the differential equation (15) can be written in the form
1%y )
L =[(t=1P=1]==+5(—-1)= +3y =
[¥] [( 1) l] 2 5(¢ l)dt 3y=0.
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2 Second-order linear differential equations

Setting y ()= 3, -_a,(1—1)", we compute

o0

Ly)o=[(:-1)"-1] gon(n—l)a,,(t—n"‘2
£50=1) S na (=143 S a (1-1)"
n=0 n=0

= — § n(n—=1)a,(t- 1)"_2
n=0

+ § n(n—"Na,(t—1)"+ § (5n+3)a,(t—1)"

n=0 n=0
=— > (n+2)(n+a,,,(t=1)"+ D (n2+4n+3)a,(:—1)".
n=0 n=0

Setting the sums of the coefficients of like powers of ¢ equal to zero gives
—(n+2)(n+Da,,,+(n*+4n+3)a,=0, so that

4 = n’+4n+3 g =3,
"2 (n+2)(n+1) " o427

n>0. (16)

To satisfy the initial conditions, we set a,=7 and a,=3. Then, from (16),

a éa 2.7 a=§a=—5—’-§-7 a=la=7'5'3.7

127072 L A PO R 6= U= g4y b

a=-4—a =i.3 a=§a =§_;i.3 a=§a=8-6-4.3

3 3 1 3 s 5 5 3 5.3 s 7 7 5 775?; yeue
and so on. Proceeding inductively, we find that

3-5---(2n+1) . q 4-6---(2n+2) \ o1

G = 2-4---(2n) an a2n+1_m' (forn>1).
Hence,

p(1)=T+3(1— 1)+ %~7(z—1)2+ %-3(;—1)%

X\ 35 2n+1)(t= 1) 2 2 (n+ 1) —1)"!
T+7 +3(1—1)+3
z} 2"n! (r=1) 'gl 3:5---(2n+1)

Example 5. Solve the initial-value problem

L[y]=(1_t)j—t)2'+%+(1—t)y=0; y(©@)=1, y(0)=1.

o]

Solution. Setting y(£)= D, > a,t", we compute

n=0"n
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1000 5 o= e

[o2] [>]
+ D na "+ (1-1) Y a,t”
n=0 n=0

o0 o0

2 n(n—1a," 2= ¥ n(n—1)a,t""!

n=0 n=0

[~] o0 (=]
+ > nat"l+ Y a"— D aptt!
n=0 n=0

n=0

o0

i (n+2)(n+1)a,,,t"— D n(n—2)a,t""

n=0 n=0

) 0
+ Y at"— Y apt!
n=0 n=0

= S (144 Dayyt"— S (n+1)(n= 1y, "
n=0 n=0

00 00
+ 2 antn_ 2 an—ltn
n=0

n=1
=2a,+a,+a,
[~ 2]
+ > {(n+2)(n+1a,,,—(n+1)(n—1)a,,,+a,—a,_, } 1"
n=1

Setting the coefficients of each power of ¢ equal to zero gives

a,+a, (n+1)(n-1)a,,,—a,+a,_,
@=-— and aq,,,= i+ 2)(n+ 1) , n>1.
(17)
To satisfy the initial conditions, we set ay=1 and a,=1. Then, from (17),
—a,+a, Ja;—a,ta;
a2=—1, a3=T=O, a4=———12——=€’
8a,—as+a, | 15a5—a,+a, 1
BTTT20 T600 T T 30 360

and so on. Unfortunately, though, we cannot discern a general pattern for
the coefficients a, as we did in the previous examples. (This is because the
coefficient a,,, depends on the values of a,,,, a,, and a,_,, while in our
previous examples, the coefficient a, , , depended on only one of its prede-
cessors.) This is not a serious problem, though, for we can find the
coefficients a, quite easily with the aid of a digital computer. Sample Pascal
and Fortran programs to compute the coefficients a,,...,a, in terms of q,
and a,, and to evaluate the “approximate” solution
y(O)=ay+at+...+a,t"
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2 Second-order linear differential equations

at any point ¢ are given below. These programs have variable values for g,
and a,, so they can also be used to solve the more general initial-value
problem
dy dy ,
(1- OF + o +(1=0y=0 y(0)=a, y(0)=a,

Pascal Program

Program Series (input, output);

var
A: array[0..199] of real;
T, sum: real;
k, N: integer;

begin
readin(A[0], A[1], T, N);
page;
A[2}:=—0.5+(A[1]1+A[0]);
sum:=A[0]+A[1]+*T+A[2]+T-+T,;
fork:=1to N—2do

begin
Afk+2]:=((k+1)«(k—1) ~A[k+ 1] —A[K] + A[k—1])
H(k+1) = (k+2));
sum :=sum+A[k+2] «exp((k+2) * In(T));
end;

writeIn(‘For N=",N:3, "and T=",T:6:4);
writeln(‘the sum is: ’, sum:11:9);
end.

Fortran Program

DIMENSION A(200)

READ (5, 10) A0, A(1), T, N

10 FORMAT (3F15.8, 15)

A(2)= —0.5*(A(1)+A0)
A(B)=(A0—A(1))/2.%3.
SUM=A0+A(1)*T+AQ)* T +2+A(3)«T* %3
NA=N-2

D020 K=2,NA
AK+2)=AK—-1)—AK)+K+1.)x(K—1.)*

1 [ A(K+1)/(K+1.)+(K+2)
SUM=SUM+AK+2)*T* *(K+2)

20 CONTINUE

WRITE (6,30) N, T, SUM

30 FORMAT (1H1, 'FOR N=",13, ‘, AND T=",F10.4 /1H, ‘THE
1 | SUM IS’, F20.9)

196 CALL EXIT

END




2.8 Series solutions

See also C Program 14 in Appendix C for a sample C program.
Setting A[0]=1, A[1]=1, (A(1)=1 for the Fortran program), T=0.5, and
N =20 in these programs gives

y(2)=agta,(3)+ ... +an(L)=126104174.

This result is correct to eight significant decimal places, since any larger
value of N yields the same result.

EXERCISES

Find the general solution of each of the following equations.
Ly "+t +y=0 2.y —ty=0

3. 2+2)y"—ty'—=3y=0 4. y" =y =0
Solve each of the following initial-value problems.
5.1Q-0y"—6(t—1)y' —4y=0; y(H)=1, y'(1)=0

6. y"+1Py=0; y(0)=2, y'(O=-1

7. y"=Py=0; y(0)=0, y'(0)=-2

8y +(2+2t+ 1)y’ —(d+41)y=0; y(—1)=0, y'(—1)=1

9.

. The equation y” —2#y’+Ay =0, A constant, is known as the Hermite differential
equation, and it appears in many areas of mathematics and physics.
(a) Find 2 linearly independent solutions of the Hermite equation.
(b) Show that the Hermite equation has a polynomial solution of degree n if
A=2n. This polynomial, when properly normalized; that is, when multi-
plied by a suitable constant, is known as the Hermite polynomial H,(¢).

10. The equation (1 —¢?)y” —2ty’+ a(a+ 1)y =0, a constant, is known as the
Legendre differential equation, and it appears in many areas of mathematics
and physics.

(a) Find 2 linearly independent solutions of the Legendre equation.

(b) Show that the Legendre differential equation has a polynomial solution of
degree n if a=n.

(c) The Legendre polynomial P,(¢) is defined as the polynomial solution of the
Legendre equation with a=n which satisfies the condition P,(1)=1. Find
Po(1), P\(1), Py(#), and Py().

11. The equation (1 —%)y” — &y’ + a®y =0, a constant, is known as the Tchebycheff
differential equation, and it appears in many areas of mathematics and physics.
(a) Find 2 linearly independent solutions of the Tchebycheff equation.
(b) Show that the Tchebycheff equation has a polynomial solution of degree n
if a=n. These polynomials, when properly normalized, are called the
Tchebycheff polynomials.
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2 Second-order linear differential equations

12. (a) Find 2 linearly independent solutions of
Y+ +31% =0.
(b) Find the first S terms in the Taylor series expansion about =0 of the solu-
tion y(¢) of the initial-value problem

y'+y' +3%y=e";  y(0)=0, y'(0)=0.

In each of Problems 13-17, (a) Find the first 5 terms in the Taylor series
expansion :°=0a,,t” of the solution y(f) of the given initial-value prob-
lem. (b) Write a computer program to find the first N+1 coefficients

g,y ..., dy, and to evaluate the polynomial ay+a,t+ ... +ayt™. Then,
) L . 20
obtain an approximation of y(%) by evaluating >, _,a,(3)".

13. 1-0y"+p'+y=0; y@)=1, y'(0)=0
4. y"+y' +ty=0; y0)=-1, y'(0)=2

15. y"+ ' +e'y=0; y0)=1, y'(0)=0

16. y"+y +e‘y=0; y(0)=0, y'(0)=—1
17. y"+y'+e ‘y=0; y(0)=3, y'(0)=5

2.8.1 Singular points, Euler equations

The differential equation
d? d
LIy]=P() L+ 0() G + R(1)y=0 (M

is said to be singular at t=1¢, if P(¢,)=0. Solutions of (1) frequently
become very large, or oscillate very rapidly, in a neighborhood of the
singular point ¢,. Thus, solutions of (1) may not even be continuous, let
along analytic at ¢,, and the method of power series solution will fail to
work, in general.

Our goal is to find a class of singular equations which we can solve for ¢
near f,. To this end we will first study a very simple equation, known as
Euler’s equation, which is singular, but easily solvable. We will then use the
Euler equation to motivate a more general class of singular equations which
are also solvable in the vicinity of the singular point.

Definition. The differential equation
dy  dy
= 22 Y — =
Lly]l=t " +atdt +By=0. (2)

where a and B are constants is known as Euler’s equation.
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We will assume at first, for simplicity, that ¢ > 0. Observe that 72y” and
ty’ are both multiples of ¢" if y =¢". This suggests that we try y=¢" as a
solution of (2). Computing

d i d? _
—tT=rt" and —it"=r(r—1)"?
" (r—1)

dt
we see that
L[t ]=r(r—=1)t"+art"+ Bt"
=[r(r=1)+ar+B]t"
=F(r)t’ (3)
where

F(r)=r(r=1)+ar+B
=r2+(a—1)r+8. (4)

Hence, y =1t" is a solution of (2) if, and only if, r is a solution of the
quadratic equation

r*+(a=1)r+p8=0. (5)

The solutions r,, r, of (5) are

n==1[(a-+(a-1’-ap]
r2=—%[(a—l)—\/ a—1)2—4B].

Just as in the case of constant coefficients, we must examine separately the
cases where (a — 1)? —48 is positive, negative, and zero.

Case 1. (a—1)>—48>0. In this case Equation (5) has two real, unequal
roots, and thus (2) has two solutions of the form y,(¢)=1¢", y,(t)=1".
Clearly, 1" and ¢" are independent if r, # r,. Thus the general solution of
(2) is (for t > 0)

y(t)=c "+ eyt

Example 1. Find the general sclution of

d2
L[y]:tz__f+4t-dl+2y:0’ t>0. (6)

Solution. Substituting y =1¢" in (6) gives
Lt =r(r—1)t +4rt"+21"
=[r(r—1)+4r+2]t
=(r2+3r+2)t"
=(r+1)(r+2)t"

199



2 Second-order linear differential equations

Hence r,=—1,r,=—2 and
c
y()=cpt 't t=L+ 2
t 12

is the general solution of (6).

Case 2. (a—1)>—48=0. In this case

_1-a
n=—
and we have only one solution y =" of (2). A second solution (see Exercise
11) can be found by the method of reduction of order. However, we would
like to present here an alternate method of obtaining y, which will generalize
very nicely in Section 2.8.3. Observe that F(r)=(r —r,)? in the case of
equal roots. Hence

ry

Llt']=(r—n)t". (7)
Taking partial derivatives of both sides of (7) with respect to r gives
2 Llr)= L[%t’ =2 [(r=nyr].
Since 9(t")/dr =¢"In ¢, we see that
Ll'ine]=(r—r)t' e +2(r —r)e". (8)
The right hand side of (8) vanishes when r = r,. Hence,
L[t"Int]=0

which implies that y,(¢)=1¢"In¢ is a second solution of (2). Since ¢ and
t"'In ¢ are obviously linearly independent, the general solution of (2) in the
case of equal roots is

y()=(c,+c,Int)t",  t>0.

Example 2. Find the general solution of
d%y dy
22 2§ 4
Liy]=¢ .2 5t it 9y =0, t>0. 9)

Solution. Substituting y =¢" in (9) gives
L[t"]=r(r—1)t"=5rt"+9¢t
=[r(r—1)—5r+9]¢
=(rt—6r+9)t"
=(r—3)"r".
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The equation (r —3)* =0 has r =3 as a double root. Hence,
(1) =2, p(1)=nt
and the general solution of (9) is

y(t)=(c,+c,Int)3, t>0.

Case 3. (a—1)>—48<0. In this case.
rn=A+tip and r,=A—ip
with

(a—171"?
>\:121):,‘“:[43 (2 1)] (10)

are complex roots. Hence,

¢(t) — t}\+iu — t)\tip.

— t/\(elnt)iﬂ = fheinint
= tMcos(plnz)+isin(plnt)]
is a complex-valued solution of (2). But then (see Section 2.2.1)
»(1) =Re{(1)} = *cos(pln1)
and
y,(t) =Im{¢(z)} =t sin(pln¢)

are two real-valued independent solutions of (2). Hence, the general solution
of (2), in the case of complex roots, is

y(t) =1 e,cos(plnt)+ c,sin(plnt)]
with A and p given by (10).

Example 3. Find the general solution of the equation
L[y]=ty"—50'+25y=0, 1>0. (11)
Solution. Substituting y =1¢" in (11) gives
Llt")=r(r—1)t"—5rt"+25¢"
=[r(r—1)—5r+25]¢
=[r—6r+25]¢
The roots of the equation r? —6r +25=0 are

6xy36—100

3 =3=+4

201



2 Second-order linear differential equations

so that
¢(t):t3+4i:t3t4i
= 3p(nndi — (3,i4In1)

=t3[cos(4Int)+isin(41n¢)]

is a complex-valued solution of (11). Consequently,

yi(t) =Re{e(t)} =tcos(4Int)
and
y,(t) =Im{¢(z)} =1*sin(4In¢)
are two independent solutions of (11), and the general solution is
y(t)=1t*[c,cos(4Int)+ ¢c,sin(4Int)],  ¢>0.

Let us now return to the case ¢ <0. One difficulty is that " may not be
defined if # is negative. For example, (— 1)!/2 equals i, which is imaginary. A
second difficulty is that In ¢ is not defined for negative 1. We overcome both
of these difficulties with the following clever change of variable. Set

t=—x, x>0,
and let y = u(x), x > 0. Observe, from the chain rule, that

& _dudv__du
dt  dx dr ~  dx
and
d_zy:i( du) d( du)dx d*u
dr? dt dx dx dx | dt g%’

Thus, we can rewrite (2) in the form

d2
(=25 Fa(=x)( - ] +pu=0
or
x jiﬁ-axd +Bu= x>0 (12)
X

But Equation (12) is exactly the same as (2) with ¢ replaced by x and y
replaced by u. Hence, Equation (12) has solutions of the form

o x"+cyx
u(x)=1(c,+clnx)x" (13)
[ccos(pln x)+ c,sin(pln x)] x?

202
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depending on whether (a —1)? —48 is positive, zero, or negative. Observe
now that

x=—t=|t|
for negative z. Thus, for negative ¢, the solutions of (2) have one of the forms
¢ lt]" +cyfe]"
[c,+cyIn|e]]|2|"
[eicos(uln|r])+ c,sin(ine] )] |¢]*

Remark. The equation
(1=1,)" —+a(z—to) D 4 py=0 (14)
is also an Euler equation, with a singularity at ¢ = ¢, instead of ¢ = 0. In this

case we look for solutions of the form (¢ —¢,)". Alternately, we can reduce
(14) to (2) by the change of variable x =1 —1¢,,.

EXERCISES

In Problems 1-8, find the general solution of the given equation.

L 2y"+51p'=5y=0 2.2y +3y'— y=0

3. (1 =D} =21 -1)y'+2y=0 4 ’y"+3p'+y=0

5. 07" —ty'+y=0 6. (1=2)%y"+5(t=2)y'+4y =0
7. 29"+’ +y=0 8. 17y 43" +2y =0

9

. Solve the initial-value problem
ry"—n'=2y=0; y(1)=0, y'(1)=1
on the interval 0 <t <<co.
10. Solve the initial-value problem
y” =3y’ +4y=0; y(1)=1, y'(1)=0
on the interval 0 <t <co.

11. Use the method of reduction of order to show that y,(¢) =¢"In¢ in the case of
equal roots.
2.8.2 Regular singular points, the method of Frobenius

Our goal now is to find a class of singular differential equations which is
more general than the Euler equation

d?y
2
d2+atdt+By 0 (1)
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2 Second-order linear differential equations

but which is also solvable by analytical techniques. To this end we rewrite
(1) in the form

d’y  ady B
dt2+tdt 2y—O (2)

A very natural generalization of (2) is the equation

L[y]— +p(t) tat)y=0 3)
where p(t) and ¢(¢) can be expanded in series of the form
p
p(t)=22+ pi+ pot+ pyt+ -

9 , 9
q(t)=;g+71+q2+q3t+q412+--~ (4)

Definition. The equation (3) is said to have a regular singular point at t =0
if p(¢) and g(¢) have series expansions of the form (4). Equivalently, t = 0
is a regular singular point of (3) if the functions #p(¢) and ¢2g(t) are
analytic at ¢t = 0. Equation (3) is said to have a regular singular point at
t =t if the functions (¢ — ¢,) p(¢) and (¢ — t,)q(¢) are analytic at t =1¢,.
A singular point of (3) which is not regular is called irregular.

Example 1. Classify the singular points of Bessel’s equation of order »
zZ‘i’sz (12— p?)y=0, (5)

where » is a constant.
Solution. Here P(t)=t? vanishes at t =0. Hence, t = 0 is the only singular
point of (5). Dividing both sides of (5) by ¢? gives

d*y 1 dy v2)
d[2+ld[+1 t—zy—O

Observe that

ip(t)=1 and t%(t)=1>—»?
are both analytic at r = 0. Hence Bessel’s equation of order » has a regular
singular point at 1 = 0.

Example 2. Classify the singular points of the Legendre equation

(1— )"y zt‘zm(aﬂ)y:o 6)

where a is a constant.
Solution. Since 1—1t? vanishes when t=1 and —1, we see that (6) is
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singular at ¢ = =1. Dividing both sides of (6) by 1—¢? gives
2
dy _ 2 gflz+a(a+1)y:
dr?  1—¢* dt 1—¢2

Observe that
2t

1+1¢

(t=Dp(1)=

and

1+t

(= 1Pat0) =a(ar ) L = aar ) 12

are analytic at = 1. Similarly, both (z +1)p(¢) and (¢ +1)%q(¢) are analytic
at t=—1. Hence, t =1 and ¢ = — 1 are regular singular points of (6).

Example 3. Show that ¢t =0 is an irregular singular point of the equation
d d
" L +3%2 y +1y=0. (7)
Solution. Dividing through by #? gives
2
Ay 3 1
dri?  rdt

In this case, the function
_(3)\_3
tp(1) —t( " ) =7
is not analytic at # = 0. Hence ¢ = 0 is an irregular singular point of (7).

We return now to the equation

Lly]= +p(t) , tal)y= (8)

where t=0 is a regular smgular point. For simplicity, we will restrict
ourselves to the interval #>0. Multiplying (8) through by 72 gives the
equivalent equation

L= 5 () L + gty =0. ©)

We can view Equation (9) as being obtained from (1) by adding higher
powers of ¢ to the coefficients @ and B. This suggests that we might be able
to obtain solutions of (9) by adding terms of the form ¢"*1, "*2,... to the
solutions ¢” of (1). Specifically, we will try to obtain solutions of (9) of the
form

(o ¢] 0
()= a "=t ap".
n=0 n

=0
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Example 4. Find two linearly independent solutions of the equation

2

f+é)—)+ty=0, 0<t<c0. (10)

d
L[y]—at dt

dr*
Solution. Let

o0
y(t)y= Y a,p ", a,#0.
n=20

Computing
y()= 2 (n+r)a, !
n=0

and

o0

y'(t)= 3 (n+r)(n+r—1a,"t 2

n=0

we see that

L{y] =t’[2 go(n+r)(n +r—1a, !

o0 o0
+ X (n+r)agsm '+ > a,,t"“]
n=0 n=0

= t’[Z > (n+r)(n+r—1)a, !
n=0

[o} o0
+ 3 (n+r)a "'+ > an_zt"_lJ
n=0 n=2

=[2r(r —1)ag+rag|t" ' +[2(1+ r)ra, + (1+r)a,]t"

e o]
+ X [2(n+r)(n+r—1a,+(n+r)a,+a,_,|t""!
n=2

Setting the coefficients of each power of ¢ equal to zero gives

@) 2r(r —lag+ray=r2r—1a,=0,

(ii) 2(r +Dra, +(r+Da,=(r +1)Q2r+1a, =0,

and

(i) 2(n+r)Yn+r—NDa,+(n+rya,=(n+r)2(n+r)—1lla,=—a,_,,
n=2.

The first equation determines r; it implies that » =0 or r =3. The second
equation then forces a, to be zero, and the third equation determines a,, for
n=2.
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2.8 Series solutions

(1) r=0. In this case, the recurrence formula (iii) is
— a4,
a,=——=,
" n(n—-1)

Since a, =0, we see that all of the odd coefficients are zero. The even
coefficients are determined from the relations

) _ 4 _ 49 _ a4 49

23 YT 47 T 2437 YT 611 2:4-6-3-7-11
and so on. Setting a, =1, we see that

n=2.

a,=

2 t4 __1)"t2n

v =
»n(t)=1 2,3+2.4.3.7+ =1+ 2 2"n13-7---(4n—1)

n=1

is one solution of (10). It is easily verified, using the Cauchy ratio test, that
this series converges for all 7.
(ii) r =1. In this case, the recurrence formula (iii) is

— 45— — a4, n=2

ST AR+ —1]  n@n+1)

Again, all of the odd coefficients are zero. The even coefficients are
determined from the relations
—a, —a, __ ay —a, —a,

BT T 49 24590 %7613 2.4-6-5-9-13
and so on. Setting a, =1, we see that
s t2 14
y2(t)=t/[1—ﬁ Trasst ]
~—1)"t2"
2 ;1 2"n15-9 -+ (4n+1)

is a second solution of (10) on the interval 0 <t <oco.
Remark. Multiplying both sides of (10) by ¢ gives

2t2‘;y+tdy+ty 0.

d
This equation can be viewed as a generalization of the Euler equation
d? dsy  dy _
2
2t o y T = 0. (11)

Equation (11) has solutions of the form ¢”, where
2r(r—1)+r=0.

This equation is equivalent to Equation (i) which determined r for the
solutions of (10).
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2 Second-order linear differential equations

Let us now see whether our technique, which is known as the method of
Frobenius, works in general for Equation (9). (We will assume throughout
this section that ¢ >0.) By assumption, this equation can be written in the
form

d? d
L[y]:tzﬁ-i_t[Po‘*'Plt"'Pth"‘ "']7);+[qo+‘11t+‘12t2+ - ]y=0.

Set
oo}
y(t)= 3 a, ", with a, #0.
n=0
Computing
o0
y()= 3 (ntr)a,mt!
n=0
and
oo}
()= 3 (n+r)(n+r—1)a,"*?
n=0
we see that

b8

L[y]zf{ §O<n+r>(n+r-1)antn+(

+ ( éoqmtm) (§Ot)}

Multiplying through and collecting terms gives

pmt’") éo(nﬂ)a,,tn]

Il

0

m

L[y]=[r(r—1)+ por + qo]apt”
+{[(1+’)V+P0(1+’)+‘10]al+("P1 +4q)ag)t !

+{[(n+r)(n+r—1)+p0(n+ r)+q.)a,

n—1

+ 2 [(k+r)pait g, ak}’"J”
k=0
+ ...
This expression can be simplified if we set

F(r)=r(r—=1)+ pyr + ¢q,. (12)
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2.8 Series solutions

Then,
L[)’]:aoF(’)tr+[alF(1+’)+("P1+‘11)ao]t1+’+
n—1
+a,,F(n+r)t"+r+{ > [(k+r)p"*k+qn—k]ak}t"+’
k=0
4.

Setting the coefficient of each power of ¢ equal to zero gives

F(r)=r(r=1)+pyr+4q,=0 (13)
and
n—1
Fin+r)a,=— 3 [(k+r)p,_y + 4, i)a,, n=>1. (14)
k=0

Equation (13) is called the indicial equation of (9). It is a quadratic
equation in 7, and its roots determine the two possible values r; and r, of r
for which there may be solutions of (9) of the form

[oo}

2 a, tn+r.
n=0
Note that the indicial equation (13) is exactly the equation we would obtain
in looking for solutions ¢” of the Euler equation

dy

dy
d2 + pot—- dt +4¢,y=0.

Equation (14) shows that, in general, a, depends on r and all the preceding
coefficients a, a,,...,a,_,. We can solve it recursively for a, provided that
F(1+r), F2+r),...,F(n+r) are not zero. Observe though that if F(n+r)
=0 for some positive integer r, then n + r is a root of the indicial equation
(13). Consequently, if (13) has two real roots r,, r, with r, >r, and r, — r, not
an integer, then Equation (9) has two solutions of the form
oo [e]
n(@)=1" X a,(r)t", (1) =17 3 a,(r)t",
n=0 n=20

and these solutions can be shown to converge wherever tp(¢) and #%g(¢)
both converge.

Remark. We have introduced the notation a,(r,) and a,(r,) to emphasize
that a, is determined after we choose r =r, or r,.

Example 5. Find the general solution of the equation

dy

2 +3y=0. (15)

L[y]—4t‘;y+3
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2 Second-order linear differential equations

Solution. Equation (15) has a regular singular point at ¢ =0 since

tp(t)=3 and r’q(r)=13t
are both analytic at 1 = 0. Set

o0
y(t)= Y a, ", ay,#0.

Computing
0
V(D)= 3 (n+r)amr!
n=0
and
o0
y' ()= 3 (n+r)n+r—1)a" 2
n=0
we see that

L{y]=4 Eo(n +r)n+r—1a, "1

00 o0
+3 Y (n+r)a "t 43 Y a1t
n=0 n=0

2 [4(n+r)(n+r—1)+3(n+r)]a " '+ 3 3a,_ 1"+

n=1
Setting the sum of coefficients of like powers of ¢ equal to zero gives
ar(r—1)+3r=4r>—r=r(4r—1)=0 (16)
and
[4(n+r)(n+r—1)+3(n+r)]a,=(n+r)[4(n+r)—1]a,=—3a,_,,
n=1. (17)

Equation (16) is the indicial equation, and it implies that » =0 or r =1
Since these roots do not differ by an integer, we can find two solutions of
(15) of the form

%)

n+r
> a,t
n=0

with g, determined from (17).

r =0. In this case the recurrence relation (17) reduces to
a,=—3 @) __—3a,, )
4n(n—1)+3n  n(4n—1)
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Setting a, =1 gives

==l a=757 =37
_ —3a2_ 2 1
N TR I AT R
_ ——3a3_ 3 1
R TR W R T

and, in general,

(-3
a, — .
" AT 11-15- - (4n—1)
Hence,
S (=173
= " 18
(o) ngon!7-11-15---(4n—1) (18)

is one solution of (15). It is easily seen, using the Cauchy ratio test, that
y,(¢) converges for all ¢. Hence y,(¢) is an analytic solution of (15).

r =%. In this case the recurrence relation (17) reduces to

—3a,_ —3a,_
a,= nol =l s,
" (n+%)[4(n—%)+3] n(4n+1)

Setting a, =1 gives

_3 22 I
“hTTS BT T 235913

34
~23.4.5.9.-13-17° -

ay

Proceeding inductively, we see that

4= (=n"3"
" n15-9-13--- (4n+1)°

Hence,

n

o0 __l)n3n
fy=¢1/4 (
»(t) Eon!s-9-13---(4n+1)

is a second solution of (15). It can easily be shown, using the Cauchy ratio
test, that this solution converges for all positive 7. Note, however, that y,(7)
is not differentiable at r = 0.

The method of Frobenius hits a snag in two separate instances. The first
instance occurs when the indicial equation (13) has equal roots r,=r,. In
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2 Second-order linear differential equations

this case we can only find one solution of (9) of the form
o0
nt)=1" % a,p"
n=0

In the next section we will prove that (9) has a second solution y,(¢) of the
form

[e e}
n(t)=y(t)e+1" 3 be"
n=0

and show how to compute the coefficients b,. The computation of the b, is
usually a very formidable problem. We wish to point out here, though, that
in many physical applications the solution y,(7) is rejected on the grounds
that it is singular. Thus, it often suffices to find y,(¢) alone. It is also
possible to find a second solution y,(¢) by the method of reduction of order,
but this too is usually very cumbersome.

The second snag in the method of Frobenius occurs when the roots r), r,
of the indicial equation differ by a positive integer. Suppose that r, =r, + N,
where N is a positive integer. In this case, we can find one solution of the
form

0
y(t)=t" E a,t”.
n=0
However, it may not be possible to find a second solution y,(¢) of the form
00
y2(t) =" E bntn'
n=0

This is because F(r, +n)=0 when n= N. Thus, the left hand side of (14)
becomes

N-—1

O'aN:_kgo [(k+r2)pN—k+qN—k]ak (19)

when n = N. This equation cannot be satisfied for any choice of ay, if

N—1
2 [(k+r2)PN—k+CIN—k]ak7EO-
k=0

In this case (see Section 2.8.3), Equation (9) has a second solution of the
form

»()=y(ne+1 X b
n=0

where again, the computation of the b, is a formidable problem.
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2.8 Series solutions

On the other hand, if the sum on the right hand side of (19) vanishes,
then a,, is arbitrary, and we can obtain a second solution of the form

0
.))2(t)=tr2 E bntn‘
n=0

We illustrate this situation with the following example.
Example 6. Find two solutions of Bessel’s equation of order 3,

29

e +t +(t —1/4)y=0, 0<t<oo. (20)
Solution. This equation has a regular singular point at ¢ = 0 since

t(t)=1 and t*%q(t)=1*—1%
are both analytic at t = 0. Set

y(t)= 3 a,t"", a,#0.

Computing
o0
y()= 2 (ntr)a,m!
n=0
and
0
y'(t)= 3 (n+r)(n+r—1a, "2
n=0
we see that

Liyl= 2 (n+r)n+r—1)a, "+ 2 (ntr)a,i"*r
n=0

+ 2 a tn+r+2_% 2 antn+r
n=0

o0
2 [(n+r)(n+r—=0)+(n+r)—1]a, "+ 2 a,_,t"*".
n=2
Setting the sum of coefficients of like powers of ¢ equal to zero gives
F(")aoz[’(’_l)""_l]aoz(rz—%)a =0 (i)
F+r)a=[1+r)r+(1+r)—$la,=[(1+r)?~i]a,=0 (i)

and
F("+’)an=[(n+r)2——%]a,,:—a,,_z, n=2 (iii)

Equation (i) is the indicial equation, and it implies that r, =4, r, = — 1.
ri=1: Set a,=1. Equation (ii) forces a, to be zero, and the recurrence
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2 Second-order linear differential equations

relation (iit) implies that

) _ a,—;

= = , n=2.
n F(n+1) n(n+1) "
This, in turn, implies that all the odd coefficients a5, as,..., are zero, and
the even coefficients are given by
2753 723 3
_ Ta _ 1 _ 1
=45 T23.45 5
_ a4 _ -1 _ b
%767 234567 T

and so on. Proceeding inductively, we see that

(="

Y= )2 1)
Hence
A
yx(t):t‘/2(1—§+—5—!—ﬁ+ )
is one solution of (20). This solution can be rewritten in the form
e PR
r0=5 (=g =g
1 .
=—sint.
Vi
r,=—73: Set ay=1. Since 1+ r, =} is also a root of the indicial equation,

we could, conceivably, run into trouble when trying to solve for a,.
However, Equation (ii) is automatically satisfied, regardless of the value of
a,. We will set a, = 0. (A nonzero value of a, will just reproduce a multiple
of y,(¢)). The recurrence relation (iii) becomes
a,= _an2—2 — —zan*Z — Gy , n=2.

(n_%) _% n“—n n(n—l)

All the odd coefficients are again zero, and the even coefficients are

_Tay 1
QT T T

_—a, 1
T3 T

_ a1
%" 6.5 6l
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2.8 Series solutions

and so on. Proceeding inductively, we see that

_ =Y

a, =—.
2 (2n)!
Hence,
T A
=r2(1-L 4+ L,
y(t) =t 1 2v+4! 6|+ )
=—cost

is a second solution of (20).

Remark 1. If r is a complex root of the indicial equation, then
(oo}
y()y=t" Y a,t"
n=0

is a complex-valued solution of (9). It is easily verified in this case that both
the real and imaginary parts of y(t) are real-valued solutions of (9).

Remark 2. We must set
o0
y(O)=]t]" 2 a,t”
n=0

if we want to solve (9) on an interval where ¢ is negative. The proof is
exactly analogous to the proof for the Euler equation in Section 2.8.1, and is
left as an exercise for the reader.

We summarize the results of this section in the following theorem.

Theorem 8. Consider the differential equation (9) where t=0 is a regular
singular point. Then, the functions tp(t) and t%q(t) are analytic at t =0
with power series expansions

p(t)=pytpit+pe>+-- 1%q(t)=qo+qt + g2+ - -

which converge for |t| <p. Let r| and r, be the two roots of the indicial
equation

r(r—=1)+ por+¢,=0
with r, = r, if they are real. Then, Equation (9) has two linearly independent

solutions y,(t) and y,(t) on the interval 0 <t <p of the following form:
(a) If ry—r, is not a positive integer, then

0 00
()= 3 an", plt)=17 F br".
n=0 n=0
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2 Second-order linear differential equations

(b) If ry=r,, then
[e e} o0
n()y=1 T ar", y(t)=y (et X b
n=0 n=0
(¢) If r,— r,= N, a positive integer, then
o0 [o0]
n()=1" Z a,t", yp()=ay(t)nr+e2 3 byt
n=0 n=0

where the constant a may turn out to be zero.

EXERCISES

In each of Problems 1-6, determine whether the specified value of ¢ is a
regular singular point of the given differential equation.

L t(t—=2%"+p'+y=0;t=0 2. 1((t—DYy "+ '+ y=0;1=2

3. (sint)y"+(cost)y’+%y=0; =0 4. ("= Dy"+e'y+y=0;t=0

5. (1—tH)y"+ )y’+y=0;t=—1

1
sin(z+1
6. 3y +(sint})y'+1y=0;1=0

Find the general solution of each of the following equations.

7. 207" 3 —(1+ 1)y =0 8. 2p"+(1—20)y'— y=0
9. 2" +(1+ 1)y’ —2y=0 10. 213" — ' +(1+ 1)y =0
11. 41" +3y’'—3y =0 12. 212"+ (12— )y’ + y=0

In each of Problems 13-18, find two independent solutions of the given
equation. In each problem, the roots of the indicial equation differ by a
positive integer, but two solutions exist of the form t"3%_,a,t".

13. 12y — ' — (2 +3y=0 14. 12y"+(t—12)y'—y=0
15. " — (12 +2)y’+ty=0 16. 12"+ @t — 1)y’ —ty =0
17. 2y +1(t+1)y’—y=0 18. " —(@4+ 1)y’ +2y=0

19. Consider the equation
2y +(12=31)y’+3y=0 (+)

(a) Show that r =1 and r =3 are the two roots of the indicial equation of ().
(b) Find a power series solution of (*) of the form

0
()= 3 a,t", ay=1.
n=0
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20.

21.

22.

2.8 Series solutions

(c) Show that y,(t)=1%"".
(d) Show that (*) has no solution of the form

o0
t > bt".
n=0

(e) Find a second solution of (*) using the method of reduction of order. Leave
your answer in integral form.

Consider the equation
2y"+ty'—(1+1)y=0.

(a) Show that r=—1 and r=1 are the two roots of the indicial equation.
(b) Find one solution of the form

o0
()=t a,"
n=0

(c) Find a second solution using the method of reduction of order.
Consider the equation
'+’ +2y=0.

(a) Show that r =0 and r =1 are the two roots of the indicial equation.
(b) Find one solution of the form

oo
n()=t 3 a,"
n=0

(¢) Find a second solution using the method of reduction of order.
Consider the equation
" +(1—1t?)y’ +4ty =0.

(a) Show that » =0 is a double root of the indicial equation.
(b) Find one solution of the form y,(¢) =22, a,t".
(c) Find a second solution using the method of reduction of order.

. Consider the Bessel equation of order zero

22y + '+ ety =0.
(a) Show that r =0 is a double root of the indicial equation.
(b) Find one solution of the form

2 I 18
TRV Tvor A
This solution is known as Jy().
(c) Find a second solution using the method of reduction of order.
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25.

26.

27.

28.

29.

Second-order linear differential equations

. Consider the Bessel equation of order »

2"+’ + (12 —»2)y=0
where » is real and positive.
(a) Find a power series solution

v [ee]

S a,t", ap=1.

ORE

t
v!

n
This function J,(¢) is called the Bessel function of order v.
(b) Find a second solution if 2» is not an integer.

The differential equation
p”"+(1—1t)y’+Ay=0, A constant,

is called the Laguerre differential equation.

(a) Show that the indicial equation is r?> = 0.

(b) Find a solution y(¢) of the Laguerre equation of the form -, a,t".
(c) Show that this solution reduces to a polynomial if A = n.

The differential equation
t(1=0)y"+[y—(1+a+B)t]y' —apy=0

where a, 8, and y are constants, is known as the hypergeometric equation.

(a) Show that 1 = 0 is a regular singular point and that the roots of the indicial
equation are 0 and 1-v.

(b) Show that r=1 is also a regular singular point, and that the roots of the
indicial equation are now 0 and y —a— 8.

(c) Assume that y is not an integer. Find two solutions y,(¢) and y,(¢) of the
hypergeometric equation of the form

o0 o0
yi(1)= X a,t", yp()=1"7 T but".
n=0 n=0

(a) Show that the equation
2(sint)y”"+(1—t)y'—2y=0
has two solutions of the form
o o] o0
n()= 2 at", p()=1723 bt".
n=0 n=0
(b) Find the first 5 terms in these series expansions assuming that a, = b, =1.

Let y(¢t) = u(t)+iv(t) be a complex-valued solution of (3) with p(#) and ¢(r)
real. Show that both u(z) and v(r) are real-valued solutions of (3).

(a) Show that the indicial equation of

2y"+ ' +(1+1)y=0 (*)
has complex roots r = *+i.
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2.8 Series solutions

(b) Show that (*) has 2 linearly independent solutions y(¢) of the form

[o o] [>e]
y(t)=sin(Int) 3, a,t"+cos(Int) X b,t".
n=0 n=0

2.8.3 Equal roots, and roots differing by an integer

Equal roots.
We run into trouble if the indicial equation has equal roots r, = r, because
then the differential equation

d’y dy _
P =L +0(n G+ R(1)y=0 (1)
has only one solution of the form
0
)=t 2 a,r". (2)
n=0

The method of finding a second solution is very similar to the method used
in finding a second solution of Euler’s equation, in the case of equal roots.
Let us rewrite (2) in the form

y(@)=y(,r)=1" 3 a,(r)t"
n=0
to emphasize that the solution y(¢) depends on our choice of r. Then (see
Section 2.8.2)
L{yl(t,r)=aoF(r)r
0 n—1
+ 2 {an(r)F(n +r)+ 3 [(k+r)pn—k+qn—k]ak}tn+r'
n=1 k=0

We now think of r as a continuous variable and determine a,, as a function
of r by requiring that the coefficient of :"*" be zero for n=1. Thus

n—1
-2 [(k+r)pn—k+qn—k]ak
a,(r)=—-=2
g F(n+r)
With this choice of a,(r), we see that
Lly)(z,r)=aoF(r)t". )

In the case of equal roots, F(r)=(r — r,)?, so that (3) can be written in the
form

2 r
LIyt r)=ao(r—n)t"
Since L[ y](¢, ;) =0, we obtain one solution

a0+ 3 a,,<r1>r"].

n=1

y(t)=1"
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2 Second-order linear differential equations

Observe now, that

3Ll n =1 e

J ,
= gr—ao(r - r,)zt

=2ay(r—r)t"+ao(r—r)(Int)t"
also vanishes when r = rl Thus

)b(t) yl(t r)‘r r

[oe]

= %[ 2 an(r)tn+r]r:r

n=0

e i+ S a(r)imn

n=20

=y,(t)lnt + 2 r )t
n=0

nMS

n

is a second solution of (1).
Example 1. Find two solutions of Bessel’s equation of order zero
d’y  dy
— 2 2, —
Llyl=t 2 y Tt Ty =0, t>0. (4)
Solution. Set

o0
)= 2 a1t
n=0

Computing
[o¢]
y(0)= 3 (n+r)a,mr!
n=0
and
o0
y'(t)= 3 (n+r)(n+r—1)a,"t 2
n=0
we see that

i
M8 11 M8

(=}

[e¢] [e o]
L[y] (n+r)n+tr—ag""+ Y (n+r)a "+ D a"trt?

n=0 n=0

(=}

=

(e o]
(n+r)amtr+ 3 a,_ "
n=2

=
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Setting the sums of like powers of ¢ equal to zero gives

() r’ay=F(r)a,=0
() 1+r)2a,=F(1+r)a,=0
and
(i) (n+r)a,=F(n+r)a,=—a,_,, n=>2.
Equation (i) is the indicial equation, and it has equal roots r,=r,=0.
Equation (ii) forces a, to be zero, and the recurrence relation (iii) says that
— a4,

(n+r)2‘

Clearly, a; =as=a,=--- =0. The even coefficients are given by

—a -1

ar) ==

T @)
—a, 1

4+r)  Q+r)@d+r)

a,(r)=

and so on. Proceeding inductively, we see that

a2n(r): 2 (—i) 2
Q+r)@+r)---Q2n+r)
To determine y,(¢), we set r = 0. Then

-1
02(0) = 72‘

2,(0) = 1 1

22 42 24 (2')2
—1 —1
22 42 62 26(3’)2

ag(0)=

and in general

N G\ e
20 = “@n) 22"(n1)

Hence,
t2 4 16
t - +
yl( ) 22 24(2’)2 26(3|)2
5 (e
0 227(n!)?

is one solution of (4). This solution is often referred to as the Bessel function
of the first kind of order zero, and is denoted by Jy(¢).
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2 Second-order linear differential equations

To obtain a second solution of (4) we set

»()=y(Dnt+ Y a3,(0)*".
n=0

To compute a5,(0), observe that

ay(r) _d _d -2 -2
2(7) = Inja,,(r)| = p In(2+r) Q2n+r)
= —2—:11’[1n(2+ ry+In(4+r)+ - +In(2n+r)]
_ 1 1 . 1
- 2(2+r+4+r+ +2n+r)'
Hence,
a (0)=—z(l+l+---+i)a 0)
2n 2 4 2n ) 2n
1 1
= — 1+5+ +;)02n(0).
Setting
_ 1 1 1
H, =1+ 543+t (5)
we see that
, —H,(-1)"_(=1)""'H,
aZn(O): 2 2 = 2 2
227(nt) 227(n!)
and thus
o) (_1)n+1Hn i
n)=ypOnt+ ¥ ——F—=
n=0 2°"(n')

is a second solution of (4) with H, given by (5).

Roots differing by a positive integer. Suppose that r, and r,=r,+ N, N a
positive integer, are the roots of the indicial equation. Then we can certainly
find one solution of (1) of the form

o0

)ﬁ(t) =" Z an("])tn'

n=0

As we mentioned previously, it may not be possible to find a second
solution of the form

[oe]
t > bt".
n=20
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2.8 Series solutions

In this case, Equation (1) will have a second solution of the form

y,(1)

d
_a—ry(t’r) e

r2

I

o0
ay,()nt+ Y, a,(ry)t"*"
n=0

where a is a constant, and
o0

e, r)=t" 3 a,(r)"
n=0
with
a,=ay(r)=r—r,.

The proof of this result can be found in more advanced books on differen-
tial equations. In Exercise 5, we develop a simple proof, using the method of
reduction of order, to show why a logarithm term will be present.

Remark. It is usually very difficult, and quite cumbersome, to obtain the
second solution y,(¢) when a logarithm term is present. Beginning and
intermediate students are not expected, usually, to perform such calcula-
tions. We have included several exercises for the more industrious students.
In these problems, and in similar problems which occur in applications, it is
often more than sufficient to find just the first few terms in the series
expansion of y,(¢), and this can usually be accomplished using the method
of reduction of order.

EXERCISES

In Problems 1 and 2, show that the roots of the indicial equation are equal,
and find two independent solutions of the given equation.

L. y"+y —4y=0
2. 2y =t(1+10)y'+y=0

3. (a) Show that r=—1 and r =1 are the roots of the indicial equation for Bessel’s
equation of order one

d’y dy

2 2

t 2 +t 't+(t 1)y=0.
(b) Find a solution:

J() =1t Y a,t",a,=1.

n=0
Jy(t) is called the Bessel function of order one.
(c) Find a second solution:

1 & (-D)'(H,+H,_,)
H=—J(H)nr+—-|1- u 12122
(== At ,,2::1 22"n1(n—1)!
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2 Second-order linear differential equations

4. Consider the equation
y"+3y’=3y=0, t>0.

(a) Show that r =0 and r = —2 are the roots of the indicial equation.
(b) Find a solution

0
yl(t): 2 ant”'
n=0

(¢) Find a second solution
1 1 11 31

1
»(t)y=y,(H)ner+ Ty Pt gt o

5. This exercise gives an alternate proof of some of the results of this section, using
the method of reduction of order.
(a) Let t =0 be a regular singular point of the equation

’y"+1p(t)y'+q(t)y=0 (@)

Show that the substitution y = ¢"z reduces (i) to the equation

2z +[2r+ p (O]’ +[r(r =D+ rp(£)+q(2)]z=0. (ii)
(b) Let r be a root of the indicial equation. Show that (ii) has an analytic
solution z,(¢) = Z%-qa,t".
(¢) Set z,(¢)=z,(¢)v(¢). Show that
o(1)= fu(r)dr,  whereu(t)=

e*[[2r+p(t)]/tdl
2
zi (1)

(d) Suppose that r =7, is a double root of the indicial equation. Show that
21y + po =1, and conclude therefore that

u(t)'—‘?-l—ul-k-uzt-i-

(e) Use the result in (d) to show that y,(¢) has an In¢ term in the case of equal
roots.

(f) Suppose the roots of the indicial equation are r, and r,— N, N a positive
integer. Show that 27, + p, =1+ N, and conclude therefore, that

u(1)= i)

where #(¢) is analytic at ¢t = 0.

(g) Use the result in (f) to show that y,(¢) has an In ¢ term if the coefficient of ¢V
in the expansion of #(¢) is nonzero. Show, in addition, that if this coefficient
is zero, then

_b-n vy
v(z)——tN—+ +T+vlt+02t2+
and y,(¢) has no In ¢ term.
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2.9 The method of Laplace transforms

2.9 The method of Laplace transforms

In this section we describe a very different and extremely clever way of
solving the initial-value problem
d2

a;f +b% +o=f(1);  y(O0)=yo y'(0)=yo (1)
where a, b and ¢ are constants. This method, which is known as the
method of Laplace transforms, is especially useful in two cases which arise
quite often in applications. The first case is when f(¢) is a discontinuous
function of time. The second case is when f(¢) is zero except for a very
short time interval in which it is very large.

To put the method of Laplace transforms into proper perspective, we
consider the following hypothetical situation. Suppose that we want to
multiply the numbers 3.163 and 16.38 together, but that we have forgotten
completely how to multiply. We only remember how to add. Being good
mathematicians, we ask ourselves the following question.

Question: Is it possible to reduce the problem of multiplying the two num-
bers 3.163 and 16.38 together to the simpler problem of adding two num-
bers together?

The answer to this question, of course, is yes, and is obtained as follows.
First, we consult our logarithm tables and find that In3.163=1.15152094,
and In 16.38 =2.79606108. Then, we add these two numbers together to
yield 3.94758202. Finally, we consult our anti-logarithm tables and find
that 3.94758202 =1n51.80994. Hence, we conclude that 3.163 X 16.38 =
51.80994.

The key point in this analysis is that the operation of multiplication is
replaced by the simpler operation of addition when we work with the loga-
rithms of numbers, rather than with the numbers themselves. We represent
this schematically in Table 1. In the method to be discussed below, the un-
known function y () will be replaced by a new function Y (s), known as the
Laplace transform of y (7). This association will have the property that y'(¢)
will be replaced by sY (s)—y(0). Thus, the operation of differentiation with
respect to ¢ will be replaced, essentially, by the operation of multiplication
with respect to s. In this manner, we will replace the initial-value problem
(1) by an algebraic equation which can be solved explicitly for Y (s). Once
we know Y (s), we can consult our “anti-Laplace transform” tables and re-
cover y(?).

Table 1
a - Ina
b —> Inb
ab —> Ina+Inb

225



2 Second-order linear differential equations

We begin with the definition of the Laplace transform.

Definition. Let f(¢) be defined for 0< ¢ < 0. The Laplace transform of
f(2), which is denoted by F(s), or £{ f(#)}, is given by the formula

F(s)=E{f(t)} = fo Ce=stf(r)dt (2)

where
A
fwe_“f(t)dt= lim f e~ f(1)dt.
0 A—-o0 JQ

Example 1. Compute the Laplace transform of the function f(¢)=1.
Solution. From (2),

e{f()= lim fer‘”dt= lim

A—>o0 N
_{l, s>0
=!7 .
o0, s<0

Example 2. Compute the Laplace transform of the function e®.
Solution. From (2),

1__e—sA

A (a—s)A4 _
L{e“}= lim f e Ye®dt= lim e -1
A—o0 Jo A—>o0 a—s
_ 1 , §>a
=4 s5—a .
00, s<a

Example 3. Compute the Laplace transform of the functions cosw? and
sinwt.
Solution. From (2),

[+e] [c]
E{coswt}=f e Ycoswtdt and B{sinwt}=f e Ssinwtdt.
0 0

Now, observe that
) . A .
B{coswt}+iB{sinwt}=f e e di= lim f elio=9 gy
0 A—o0 Vg
e(iw—s)A -1

= lim -
A—oo  IW—S

={ 1 _stiw §>0

s—iw 2442’
undefined, s<0
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2.9 The method of Laplace transforms

Equating real and imaginary parts in this equation gives

£{coswt}= s>0.

. w
and L {sinwt}= ——,
24 w? { } 2+ w?

Equation (2) associates with every function f(¢) a new function, which

we call F(s). As the notation £{ f(¢)} suggests, the Laplace transform is an
operator acting on functions. It is also a linear operator, since

elah+eh0)=[ e afi()+eh@)]d

=c,j(;°°e“’f1 (t)dt+c2f0°°e“‘f2(t)dt
=c{fi(N}+eL{£ (1}

It is to be noted, though, that whereas f(r) is defined for 0 <t < o0, its
Laplace transform is usually defined in a different interval. For example,
the Laplace transform of e* is only defined for 2<s< 0, and the Laplace
transform of €% is only defined for 8 <5< oo. This is because the integral
(2) will only exist, in general, if s is sufficiently large.

One very serious difficulty with the definition (2) is that this integral
may fail to exist for every value of s. This is the case, for example, if f(f)=
e’ (see Exercise 13). To guarantee that the Laplace transform of f(r) exists
at least in some interval s > s,, we impose the following conditions on f(?).

(1) The function f(¢) is piecewise continuous. This means that f(¢) has at
most a finite number of discontinuities on any interval 0< ¢ < 4, and
both the limit from the right and the limit from the left of f exist at ev-
ery point of discontinuity. In other words, f(¢) has only a finite number
of “jump discontinuities” in any finite interval. The graph of a typical
piecewise continuous function f(7) is described in Figure 1.

)—t

-

Figure 1. Graph of a typical piecewise continuous function
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2 Second-order linear differential equations

(ii) The function f(z) is of exponential order, that is, there exist constants
M and ¢ such that

|f(5)| < Me®, 0<t<oo.

Lemma 1. If f(¢) is piecewise continuous and of exponential order, then its
Laplace transform exists for all s sufficiently large. Specifically, if f(t) is
piecewise continuous, and | f(1)| < Me®, then F(s) exists for s> c.

We prove Lemma 1 with the aid of the following lemma from integral
calculus, which we quote without proof.

Lemma 2. Let g(t) be piecewise continuous. Then, the improper integral

j[; wg(t)dt exists if j(; w] g(0)|dt exists. To prove that this latter integral ex-
ists, it suffices to show that there exists a constant K such that

A
[ 1s0lar<x
Sor all A.

Remark. Notice the similarity of Lemma 2 with the theorem of infinite
series (see Appendix B) which states that the infinite series Y, a, converges

if > |a,| converges, and that >, |a,| converges if there exists a constant K
such that |a||+ ... +|a,|< K for all n.

We are now in a position to prove Lemma 1.

PROOF OF LEMMA 1. Since f(¢) is piecewise continuous, the integral

fo Aot f(2)dt exists for all 4. To prove that this integral has a limit for all s
sufficiently large, observe that

4 A
f le™ f(2)|de < Mf e e dt
0 o

- M [

M
§—C

for s > ¢. Consequently, by Lemma 2, the Laplace transform of f(¢) exists
for s> c¢. Thus, from here on, we tacitly assume that |f(z)] < Me®, and
§>c. O

The real usefulness of the Laplace transform in solving differential
equations lies in the fact that the Laplace transform of f'(¢) is very closely
related to the Laplace transform of f(¢). This is the content of the follow-
ing important lemma.
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2.9 The method of Laplace transforms

Lemma 3. Let F(s)=£{f(?)}. Then
R{f (1)} =sL{f(0)} =1 (0)=5F(s)—£(0).

ProOOF. The proof of Lemma 3 is very elementary; we just write down the
formula for the Laplace transform of f'(¢) and integrate by parts. To wit,

e{7 (@)= tim [er ()

li —st 4 li A —st di
= lim f(t)’0+Agr;°sf0 e~ f(1)dt

—>00

. 4 _ g
= —f(O)+sA11_r)I:°f0 e " f(2),dt
= —£(0) + sF(s). O

Our next step is to relate the Laplace transform of f”(f) to the Laplace
transform of f(¢). This is the content of Lemma 4.

Lemma 4. Let F(s)=L{f(?)}. Then,
R{f"(0)}=5"F(s)—sf(0)—f(0).
Proor. Using Lemma 3 twice, we see that
R{f () =sL{f()}-£(0)
=s[sF(s5)—f(0)] - f(0)
=s°F (s)—sf(0)—f(0). O

We have now developed all the machinery necessary to reduce the prob-
lem of solving the initial-value problem

d2
L sDro=0 YO YO O

to that of solving an algebraic equation. Let Y (s) and F(s) be the Laplace
transforms of y (¢) and f(¢) respectively. Taking Laplace transforms of both
sides of the differential equation gives

E{ay"(t)+by'(t)+cy ()} = F(s).
By the linearity of the Laplace transform operator,
E{ay"()+by' () +cy(t)}=al{y" ()} +bE{y' (1)} +cL{¥ (D)},
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2 Second-order linear differential equations

and from Lemmas 3 and 4
Ly (O}=sY()=yo  E{y"()}=5*Y(s)~ o~ s
Hence,
a[ $2Y (5) = 70—y} ] + B[ sY (s) —yo] + Y (s)= F(s)
and this algebraic equation implies that

B (as+Db)y, N ayy F(s)
as*+bs+c as+bs+c asi+bs+c

Y (s) (4)

Equation (4) tells us the Laplace transform of the solution y (¢) of (3). To
find y(¢), we must consult our anti, or inverse, Laplace transform tables.
Now, just as Y (s) is expressed explicitly in terms of y(¢); that is, Y (s)

®© _

= f e "y(f)dt, we can write down an explicit formula for y(¢). However,
this formula, which is written symbolically as y(f)=£"'{ Y (s)}, involves
an integration with respect to a complex variable, and this is beyond the
scope of this book. Therefore, instead of using this formula, we will derive
several elegant properties of the Laplace transform operator in the next
section. These properties will enable us to invert many Laplace transforms
by inspection; that is, by recognizing “which functions they are the
Laplace transform of”.

Example 4. Solve the initial-value problem

d2
Ty—3ﬂ+2y=e3'; y(0)=1, y'(0)=0.

Solution. Let Y (s)=£{y()}. Taking Laplace transforms of both sides of
the differential equation gives
$Y (5)=s=3[s¥ (5) - 1]+2¥ (5) = —

and this implies that

— 1 s—3
(9= (5—3)(s’—3s+2) | s2—3s+2
- 1 s—3
G-1)(-2)(-3)  (-1)(s-2)" )

To find y(¢), we expand each term on the right-hand side of (5) in partial
fractions. Thus, we write
1 A B C

G-)(-2)s-3) s-1 s-275-3"
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2.9 The method of Laplace transforms

This implies that
A(s=2)(s=3)+B(s—1)(s=3)+C(s—1)(s—2)=1 (6)
Setting s=1 in (6) gives 4 =13; setting s=2 gives B=—1; and setting s=3
gives C=73. Hence,
1
(s—1)(s=2)(s—3)

Similarly, we write

11,11
s—1 s=-2 2s5-3°

=1
2

s—3 -_D | E
(s—1(s=2) s—-1 s-2

and this implies that

D(s—2)+E(s—1)=s5s-3. )
Setting s=1 in (7) gives D=2, while setting s=2 gives E= —1. Hence,
1.1 1 11 2 1
YO =357 72 33 -1 52

25 12 1.1

T 251 s—2+2s—3'
Now, we recognize the first term as being the Laplace transform of Ze'.
Similarly, we recognize the second and third terms as being the Laplace
transforms of —2e* and ;e*, respectively. Therefore,

Y(s)=€{—25-e'—-2ez’+%e3’}

so that
y(r)=3e'—2e* +3e*.

Remark. We have cheated a little bit in this problem because there are ac-
tually infinitely many functions whose Laplace transform is a given func-
tion. For example, the Laplace transform of the function

z(f)= { %e’_2€Zt+%€3', t#1,2,and 3

05 t=1,2,3

is also Y (s), since z(¢) differs from y(7) at only three points.* However,
there is only one continuous function y(f) whose Laplace transform is a
given function Y (s), and it is in this sense that we write y (1)=£""'{Y (s)}.

We wish to emphasize that Example 4 is just by way of illustrating the

method of Laplace transforms for solving initial-value problems. The best
way of solving this particular initial-value problem is by the method of

*If f(¢)=g(¢) except at a finite number of points, then fa lif(t)dt= j; bg(t)dt.
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2 Second-order linear differential equations

judicious guessing. However, even though it is longer to solve this particu-
lar initial-value problem by the method of Laplace transforms, there is still
something “nice and satisfying” about this method. If we had done this
problem by the method of judicious guessing, we would have first com-
puted a particular solution y(r)=3e*. Then, we would have found two in-
dependent solutions e’ and e* of the homogeneous equation, and we

would have written
y()=cie'+ce¥ + 1e*

as the general solution of the differential equation. Finally, we would have
computed ¢; =3 and ¢,= —2 from the initial conditions. What is unsatisfy-
ing about this method is that we first had to find all the solutions of the
differential equation before we could find the specific solution y(r) which
we were interested in. The method of Laplace transforms, on the other
hand, enables us to find y(7) directly, without first finding all solutions of
the differential equation.

EXERCISES

Determine the Laplace transform of each of the following functions.

1. ¢ 2.t

3. e“cosbt 4. e”sinbt

5. cos’at 6. sin’at

7. sinat cos bt 8. *sint

9. Given that j(; “e~**dx=Vr /2, find €{¢~'/2}. Hint: Make the change of vari-

able u=V1 in (2).
Show that each of the following functions are of exponential order.

10. ¢" 11. sinat 12. ¢V

13. Show that e” does not possess a Laplace transform. Hint: Show that e~ > e’
fort>s+1.

14. Suppose that f(¢) is of exponential order. Show that F(s)=£{ f(¢)} approaches
0 as s—o00.

Solve each of the following initial-value problems.
15. y" =5y +4y=e%; yp0)=1, y'(0)=—1
16. 2y"+y' —y=e%; y(0)=2,y'(0)=0

Find the Laplace transform of the solution of each of the following initial-
value problems.

17. y"+2y'+y=e""; y(0)=1,y (0)=3
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2.10 Some useful properties of Laplace transforms

18. y”+y=1¢*sint; y(0)=y'(0)=0
19. y”+3y’+7y=cost; y(0)=0,y'(0)=2
20. y"+y'+y=13% y(0)=2,y'(0)=0

21. Prove that all solutions y(f) of ay” + by’ + cy =f(¥) are of exponential order if
f(?) is of exponential order. Hint: Show that all solutions of the homogeneous
equation are of exponential order. Obtain a particular solution using the
method of variation of parameters, and show that it, too, is of exponential

order.
22. Let F(s)=L{f(?)}. Prove that
d"f(t dre—H0
B{ _——a{t(") ] =s5"F(s)—s""f(0)—...— —_—_fdt"‘(‘ ) .

Hint: Try induction.

23. Solve the initial-value problem
Yy —6y"+1ly —6y=e*;  y(0)=y'(0)=y"(0)=0
24. Solve the initial-value problem

y'=3y'+2y=e"";  y(to)=1, y'()=0

by the method of Laplace transforms. Hint: Let ¢(f)=y(t + ty).

2.10 Some useful properties of Laplace transforms

In this section we derive several important properties of Laplace trans-
forms. Using these properties, we will be able to compute the Laplace
transform of most functions without performing tedious integrations, and
to invert many Laplace transforms by inspection.

Property 1. If 2{ f(1)} = F(s), then
e{-f (0} =L F(s).

PrOOF. By definition, F(s)= f0°°e-s' f(¢)dt. Differentiating both sides of
this equation with respect to s gives

%F(s)=%](;we_"f(t)dt

=fow%(e“’)f(t)dmfow—te‘s’f(t)d’
=R{—tf (1))} U
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Property 1 states that the Laplace transform of the function —¢f(¢) is
the derivative of the Laplace transform of f(f). Thus, if we know the
Laplace transform F(s) of f(¢), then, we don’t have to perform a tedious
integration to find the Laplace transform of #f(¢); we need only differenti-
ate F(s) and multiply by —1.

Example 1. Compute the Laplace transform of re’.
Solution. The Laplace transform of e is 1/(s—1). Hence, by Property 1,
the Laplace transform of ze’ is

Example 2. Compute the Laplace transform of ',
Solution. Using Property 1 thirteen times gives

efy=(-1Bd L (B

ds’® s s

13dP
dsl3

B{r®)=(-1)

The main usefulness of Property 1 is in inverting Laplace transforms, as
the following examples illustrate.

Example 3. What function has Laplace transform —1/(s—2)*?
Solution. Observe that

1 d 1 1
_—— = and m=€{€2’}.

B"[— 1 2}=—te2’.
(s-2)

Example 4. What function has Laplace transform —4s/(s2+4)*?
Solution. Observe that

b _d 2 and
(32.;.4)2 ds s*+4 s2+4

Hence, by Property 1,

= £{sin2¢}.

Hence, by Property 1,

B“{ —(s;‘ﬁ)z}= —tsin2¢t.

Example 5. What function has Laplace transform 1/(s —4)?
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2.10 Some useful properties of Laplace transforms

Solution. We recognize that
1 d*1 1

(s——4)3 T ds?2s—4°

Hence, using Property 1 twice, we see that

(s—14)3 B {%ﬂe‘"}.

Property 2. If F(s)=L£{f(?)}, then
B{e‘”f(t)} =F(s—a).

ProOF. By definition,

e{ea'f(t)}=f0
[rreoares o

o0

e~Se% f (1) dt= f Ze@= £ (1) dt
0

Property 2 states that the Laplace transform of e®f(r) evaluated at the
point s equals the Laplace transform of f(#) evaluated at the point (s — a).
Thus, if we know the Laplace transform F(s) of f(¢), then we don’t have to
perform an integration to find the Laplace transform of e®f(¢); we need
only replace every s in F(s) by s—a.

Example 6. Compute the Laplace transform of e*sinz.

Solution. The Laplace transform of sint is 1/(s*+ 1). Therefore, to com-
pute the Laplace transform of e*sint, we need only replace every s by
s—3; that is, |

B{e3’sint} = m

The real usefulness of Property 2 is in inverting Laplace transforms, as
the following examples illustrate.

Example 7. What function g(¢) has Laplace transform

s—17 9

G(S)=25+(s—7)2'

Solution. Observe that

F(s)= szis?- =P {cos 57}

and that G(s) is obtained from F(s) by replacing every s by s—7. Hence,
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by Property 2,

% =£{e" cos51t}.

(s—=7)"+25
Example 8. What function has Laplace transform 1/(s2—4s+9)?
Solution. One way of solving this problem is to expand 1/(s?—4s+9) in
partial fractions. A much better way is to complete the square of s> —4s+
9. Thus, we write

L 1 1
sP—4s+9  sP—4s+4+(9—4) (s—2)*+5

Now,

1 1 .
=£ { ——sinV5 t} .
s2+5 Vs
Hence, by Property 2,
1 1

sF—4s+9 (s—2)2+5 - { Vs

e¥sinV5 t}.

Example 9. What function has Laplace transform s/(s2—4s+9)?
Solution. Observe that
§ __ 52 + 2
sP=4s+9  (s=2)°+5 (s—-2)*+5
The function s /(s+ 5) is the Laplace transform of cos V5 1. Therefore, by
Property 2,

——5‘% =P{e¥cosV5 t},
(s—2)'+5
and
Z—S— = B{ez’cos\/g 1+ 2 esinV3 t}.
s*—45+9 Vs
In the previous section we showed that the Laplace transform is a linear
operator; that is

E{lel (t)+C2f2(t)} =C1€{f1 (t)} +C2£{f2(’)}-

Thus, if we know the Laplace transforms F,(s) and F,(s), of £,(2) and f,(?),
then we don’t have to perform any integrations to find the Laplace trans-
form of a linear combination of f,(¢) and f,(¢); we need only take the same
linear combination of F\(s) and F,(s). For example, two functions which
appear quite often in the study of differential equations are the hyperbolic
cosine and hyperbolic sine functions. These functions are defined by the
equations

at

eat+e—at . eal_e—
—_— sinhgt= ——n—.

coshat = 5 , 3
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Therefore, by the linearity of the Laplace transform,

e{coshar) = 2R {e”} + 2 £{e™)

171 1 __ S
2|s—a s+a]| 2-g52
and
e {sinhar) = 2 {e” )~ 2(e™")

11t 1 9__a
2|s—a s+a s2—a?

EXERCISES

Use Properties 1 and 2 to find the Laplace transform of each of the follow-
ing functions.

1. ¢

5. t3/2 (see Exercise 9, Section 2.9)

2. t"e“ 3. tsinat 4. t2cosat

6. Let F(s)=L{f(?))}, and suppose that f(r)/t has a limit as t approaches zero.
Prove that

E{f(t)/t}=j;°°F(u)du. *)

(The assumption that f(f)/¢ has a limit as 7/—0 guarantees that the integral on
the right-hand side of (*) exists.)

7. Use Equation (*) of Problem 6 to find the Laplace transform of each of the
following functions:

sint cosat— 1
(@) —~ )] —

I_ebl

t

eﬂ

©

Find the inverse Laplace transform of each of the following functions. In
several of these problems, it will be helpful to write the functions

a3+ B2+ y,5+ 8, a2+ Bis+y
pi(s)=—; > and p,(s)= >
(as*+bs+c)(ds*+ es+f) (as+b)(cs®+ds+e)
in the simpler form
As+ B Cs+D A Cs+D
s)= and s)= + .
Pi(s) as’+bs+c ds’+es+f P2(s) as+b  cs?+ds+e
s s2—5
) (s+a)*+ b? T 34+45243s
1 s
10, — n, ———
s(s?+4) s2—35—12
1 13 3s
(s2+ a®)(s*+ b?) (s+1)*
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— 15— ——
s(s+4) (s+1)(s>+1)
1
(s2+1)°
17. Let F(s)=£{f(¢)}. Show that
(== 1e{F(s)).

Thus, if we know how to invert F'(s), then we can also invert F(s).

14.

16.

18. Use the result of Problem 17 to invert each of the following Laplace transforms
2
(a) ln( sta ) (b) arc tan2 (c) ln(l - a_z)
s s

s—a

Solve each of the following initial-value problems by the method of
Laplace transforms.

19. y”+y=sint; y(0)=1, y(0)=2

20. y"+y=tsint; y(0)=1, y'(0)=2

21. y"=2y'+y=te'; y(0)=0,y'(0)=0

22. y" =2y'+ Ty =sint; y(0)=0, y'(0)=0
2. y"+y +y=1+e" " y(0)=3,y'(0)=-5

” — 2, 0<t<3 . = 4 —
uyay={2 95183 yO=0y0=0

2.11 Differential equations with discontinuous
right-hand sides

In many applications, the right-hand side of the differential equation ay” +
by’ + ¢y =f(¢) has a jump discontinuity at one or more points. For exam-
ple, a particle may be moving under the influence of a force f,(¢), and
suddenly, at time #,, an additional force f,(¢) is applied to the particle. Such
equations are often quite tedious and cumbersome to solve, using the
methods developed in Sections 2.4 and 2.5. In this section we show how to
handle such problems by the method of Laplace transforms. We begin by
computing the Laplace transform of several simple discontinuous func-
tions.

The simplest example of a function with a single jump discontinuity is
the function

wo-[8 515

This function, whose graph is given in Figure 1, is often called the unit step

238



2.11 Differential equations with discontinuous right-hand sides

N | __=T

c
Figure 1. Graph of H,(¢)

function, or the Heaviside function. Its Laplace transform is
[~2] [~<]
R{H, (t)}=| e “H.(t)dt=| e *dt
(H(0)= e "H.(dr= [

. A _ . e—cs_e—.rA

= lim f e 'dt= lim ———
A>w J, Ao s
e—L’S

= , §>0.
$

Next, let f be any function defined on the interval 0< < oo, and let g
be the function obtained from f by moving the graph of f over ¢ units to
the right, as shown in Figure 2. More precisely, g(f)=0 for 0< t<¢, and
g(t)=f(t—c) for t > c. For example, if c=2 then the value of g at =7 is
the value of f at t=5. A convenient analytical expression for g(¢) is

g()y=H_(t)f(t—c).

The factor H,(f) makes g zero for 0< < ¢, and replacing the argument ¢
of f by t—c moves f over ¢ units to the right. Since g(¢) is obtained in a
simple manner from f(¢), we would expect that its Laplace transform can
also be obtained in a simple manner from the Laplace transform of f(¢).
This is indeed the case, as we now show.

& N

—==

!

Figure 2
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2 Second-order linear differential equations

Property 3. Let F(s)=£{f(¢)}. Then,
C{H, () (1= )} =e~F(s).
PROOF. By definition,
R(H()f(1=0))= [ "~ H () f(1—c)at
=fc°°e‘~"f(t—c)dt.

This integral suggests the substitution

E=t—c.
Then,
[Ferie=cyar= [Temsrop@as
c 0
- p—CS * —s5¢
em [ "e i (e)ds
=e “F(s).
Hence, E{H () f(t—c)}=e “L{f(1)}. O

Example 1. What function has Laplace transform e*/52?
Solution. We know that 1/s? is the Laplace transform of the function 7.
Hence, by Property 3

S =L{H (- D).

The graph of H,(¢)(¢ —1) is given in Figure 3.

Figure 3. Graph of H,(¢) (t—1)
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2.11 Differential equations with discontinuous right-hand sides

Example 2. What function has Laplace transform e =% /(s2—2s—3)?
Solution. Observe that

1 _ 1 _ 1
s1—25-3  s?—2s5+1-4 (3_1)2_22'

Since 1/(s*—2% =L {3 sinh2s}, we conclude from Property 2 that
1
(s—1)* =22
Consequently, from Property 3,

—p Lo }
B{ze sinh2¢ ;.

e E{%H3(t)e"3sinh2(t—3)}.

s2—2s—3

Example 3. Let f(¢) be the function which is ¢ for 0< <1, and 0 for ¢ > 1.
Find the Laplace transform of f without performing any integrations.
Solution. Observe that f(¢) can be written in the form

f(t)y=t[Hy ()= H,(1)] =t~ tH, (1).
Hence, from Property 1,

B{F(1)) =Lt} C{tH, (1))

Example 4. Solve the initial-value problem

d2y dy 1, 0<t<l; 0, 1<1<2;
F—3E+2y=f(t)= 1, 2<t<3; 0, 3<1<4; »(0)=0, y'(0)=0
d 1, 4<1<5; 0, 5<1<co.

Solution. Let Y (s)=L{y(¢)} and F(s)=L{f(#)}. Taking Laplace trans-
forms of both sides of the differential equation gives (s2—3s+2)Y (s)=
F(s), so that

F(s) F(s)

S Ty Sl Py P

One way of computing F(s) is to write f(¢) in the form

f()=[Ho ()= H\ ()] + [ H ()= Hy (0] + [ Hy ()~ Hs5 ()]
Hence, by the linearity of the Laplace transform

-5 —2s —3s —4s —5s
e e e e
+ - + —~

S N S N s

Fs)=1-¢
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2 Second-order linear differential equations

A second way of computing F(s) is to evaluate the integral

fowe“’f(t)dt=fole‘”dt+j;3e‘s’dt+f45e‘“dt

l—e™* —2s —3s —ds
= + +
N N s

Consequently,
e—s+e—-2s_e—3s+e——4s_e—5:
s(s—1)(s—2)

Our next step is to expand 1/s(s—1)(s—2) in partial fractions; i.e., we
write

Y (s)= 1

A B C
==+ .
s(s—l)(s-—2) s s—l+s—2

This implies that
A(s=1)(s—2)+ Bs(s—2)+ Cs(s—1)=1. (hH

Setting s=0 in (1) gives A =13; setting s=1 gives B= —1; and setting s =2
gives C=13. Thus,

1 _11 1

1
s(s—=1)s—2) T25 s—12

Consequently, from Property 3,

y(t)=[%—e'+%32t]_[-[l (t)[%“e<”')+%e2("')]
+ H, (t)[%—e(’“2)+%e2(’“2)] ~H, (t)[% _e(1—3)+_;_e2(,_3)]

FH (O] 1= 09+ 16209 = H () 4= 09 + 1209

Remark. It is easily verified that the function

1 - 1,200
3 e( ")+2e( n)

and its derivative are both zero at ¢ = n. Hence, both y(¢) and y’(¢) are con-
tinuous functions of time, even though f(¢) is discontinuous at r=1, 2, 3, 4,
and 5. More generally, both the solution y(#) of the initial-value problem

dy &
“27+b—+cy =) y(t)=ro ¥'(t)=o
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2.12 The Dirac delta function

and its derivative y’(¢) are always continuous functions of time, if f(¢) is
piecewise continuous. We will indicate the proof of this result in Section
2.12.

EXERCISES

Find the solution of each of the following initial-value problems.
L y"+2y'+y=2t-3)Hy0); »(0)=2,y'(0)=1
2. y"+y' +y=H, ()= Hy(); y0)=1,'(0)=0

Lyr+ty={b 0SI<H =3, y0@=-2

” = Sint, 0t . = ’ =
4.y ty={SnL 0<i<T s y©=1y@=0

cost, 0<i<m/2

5 +y={0, 7/2<1< 0

3 »0)=3,y(0)=-1

sin2t, 0<t<w/2 |

6y 2y ay= {02 DSIST L @=Ly @=0

7.y"+y’+7y={3 g:ii; y(©0)=0,y(0)=0

2
8 v +y=115 0<t<l; 0)=0, y’(0)=0
Yty {O’ 0l s yO=0y0
0, 0<t<l
9.y"=2'+y={1, 1<t<2 ; y0)=0y©0)=1
0, 2<t<o

10. Find the Laplace transform of [sin¢|. Hint: Observe that

o0
[sint]=sinz+2 > H,,(¢) sin(t— nm).

n=1

11. Solve the initial-value problem of Example 4 by the method of judicious guess-
ing. Hint: Find the general solution of the differential equation in each of the
intervals 0<t<1, 1<r<2, 2<t<3,3<t<4, 4<t<5, 5<t<o0, and
choose the arbitrary constants so that y(¢) and y’(¢) are continuous at the
points t=1, 2, 3, 4, and 5.

2.12 The Dirac delta function

In many physical and biological applications we are often confronted with
an initial-value problem

dZ
a;f“?% +o=f(1);  y(0)=y, »(0)=yp (M

243



2 Second-order linear differential equations

f(t)

Figure 1. The graph of a typical impulsive function f(¢)

where we do not know f(#) explicitly. Such problems usually arise when we
are dealing with phenomena of an impulsive nature. In these situations, the
only information we have about f(¢) is that it is identically zero except for
a very short time interval 1, < 1<, and that its integral over this time in-
terval is a given number /,70. If I, is not very small, then f(r) will be
quite large in the interval 7, <7< ¢,. Such functions are called impulsive
functions, and the graph of a typical f(¢) is given in Figure 1.

In the early 1930’s the Nobel Prize winning physicist P. A. M. Dirac de-
veloped a very controversial method for dealing with impulsive functions.
His method is based on the following argument. Let ¢, get closer and closer
to to. Then the function f(¢)/ I, approaches the function which is 0 for ¢+
1o, and oo for =1, and whose integral over any interval containing ¢, is 1.
We will denote this function, which is known as the Dirac delta function,
by & (¢ — t). Of course, 8 (z — t,) is not an ordinary function. However, says
Dirac, let us formally operate with 8(z— 1,) as if it really were an ordinary
function. Then, if we set f(£)= 1,8 (1 —1t,) in (1) and impose the condition

b .
f 8(1)5(t—t0)dt={ g(ty)) ifa<ty<b @
‘ 0 otherwise

for any continuous function g(¢), we will always obtain the correct solution

y().

Remark. Equation (2) is certainly a very reasonable condition to impose
on & (¢ —t). To see this, suppose that f(¢) is an impulsive function which is
positive for ¢, <t <1, zero otherwise, and whose integral over the interval
[#0,t,] is 1. For any continuous function g(f),

[ min 8] /()< g()F (<[ max ()] f(0).

Consequentlyt:) o
[ min, s0]s0a< [ 50 50as [ max s0]s0a
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2.12 The Dirac delta function

or
min g(#) < f "g(t)f(t)dt<log1?g“ g(?).

1o<1t<1 f

Thus, as 1,~/o, [ £()())di— (1)

Now, most mathematicians, of course, usually ridiculed this method.
“How can you make believe that §(¢— ;) is an ordinary function if it is
obviously not,” they asked. However, they never laughed too loud since
Dirac and his followers always obtained the right answer. In the late
1940’s, in one of the great success stories of mathematics, the French
mathematician Laurent Schwartz succeeded in placing the delta function
on a firm mathematical foundation. He accomplished this by enlarging the
class of all functions so as to include the delta function. In this section we
will first present a physical justification of the method of Dirac. Then we
will illustrate how to solve the initial-value problem (1) by the method of
Laplace transforms. Finally, we will indicate very briefly the “germ” of
Laurent Schwartz’s brilliant idea.

Physical justification of the method of Dirac. Newton’s second law of mo-
tion is usually written in the form

2 o(1) = (1 3)

where m is the mass of the particle, v is its velocity, and f(¢) is the total
force acting on the particle. The quantity mv is called the momentum of
the particle. Integrating Equation (3) between ¢, and ¢, gives

mo(t,) — mo(tp) = f’ "f(1)dt.

This equation says that the change in momentum of the particle from time

t, to time ¢, equals f f(t)dr. Thus, the physically important quantity is

the integral of the force, which is known as the impulse imparted by the
force, rather than the force itself. Now, we may assume that a >0 in Equa-
tion (1), for otherwise we can multiply both sides of the equation by —1 to
obtain a> 0. In this case (see Section 2.6) we can view y(¢), for ¢ < t,, as the
position at time ¢ of a particle of mass @ moving under the influence of the
force —b(dy /df)—cy. At time ¢, a force f(¢) is applied to the particle, and
this force acts over an extremely short time interval 7,<<¢,. Since the
time interval is extremely small, we may assume that the position of the
particle does not change while the force f(¢) acts. Thus the sum result of
the impulsive force f(7) is that the velocity of the particle jumps by an
amount 1,/ a at time ¢, In other words, y(¢) satisfies the initial-value prob-
lem

d2

df + b% +o=0;  y(0)=y, »(0)=y;
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2 Second-order linear differential equations

for 0< <1, and

d’ & , , 1o
d—+bz+cy=0; (1) =2, Y(to)=zo+; 4)

for ¢ > t,, where z, and z{ are the position and velocity of the particle just
before the impulsive force acts. It is clear, therefore, that any method
which correctly takes into account the momentum I, transferred to the
particle at time ¢, by the impulsive force f(¢) must yield the correct answer.
It is also clear that we always keep track of the momentum I transferred
to the particle by f(¢) if we replace f(¢) by I,6 (t—t;) and obey Equation
(2). Hence the method of Dirac will always yield the correct answer.

Remark. We can now understand why any solution y () of the differential
equation
d?y

az—i— + b% +cy=f(t), f(¢)a piecewise continuous function,

is a continuous function of time even though f(¢) is discontinuous. To wit,
since the integral of a piecewise continuous function is continuous, we see
that y’(¢), must vary continuously with time. Consequently, y(#) must also
vary continuously with time.

Solution of Equation (1) by the method of Laplace transforms. In order to
solve the initial-value problem (1) by the method of Laplace transforms,
we need only know the Laplace transform of 8 (¢ — #;). This is obtained di-
rectly from the definition of the Laplace transform and Equation (2), for

L{8(t—15)} sze‘s’a(t—to)dt=e“"° (for 1,>0).
0

Example 1. Find the solution of the initial-value problem

d? a
S -aZ y=3(-D+8G-D;  yO=1 YO=1.

Solution. Let Y (s)=£{y(#)}. Taking Laplace transforms of both sides of
the differential equation gives
s —s—1-4(sY—1)+4Y=3e +e™ %
or
($2=4s+4)Y (s)=s5-3+3e " +e %,
Consequently,
3e~* e

+ 5 3"
(—2) (s=2)° (s-2)

Y(s)=
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2.12 The Dirac delta function

Now, 1/(s—2)*>=£{te*}. Hence,
3¢~ + e—2s

(s=2 (s-2)

To invert the first term of Y (s), observe that

s—3 s—2 1
= — =E 2t _B 2t .
(s—2)2 (s—2)2 (s—2)2 {e”) {re”'}
Thus, y(1)=(1-1)e* +3H,(1)(1 = 1)e*~ D+ H,(1)(1 —2)e**~,

=R {3H, (1)(1—1)eX'~ "+ H, (1)(1-2)eX"~ ).

It is instructive to do this problem the long way, that is, to find y(¢) sep-
arately in each of the intervals 0< <1, 1<r<2and 2<t< 0. For 0<t<
1, y(2) satisfies the initial-value problem

d2

F—4dy +4y=0; y(0)=1, y'(0)=1.
The characteristic equation of this differential equation is r>—4r+4=0,
whose roots are r;=r,=2. Hence, any solution y(¢) must be of the form
y(9)=(a, + ayt)e*. The constants a, and a, are determined from the initial
conditions

1=y(0)=a, and 1=y'(0)=2a,+a,.

Hence, a;=1, a,=—1 and y(/)=(1—f)e* for 0< ¢t<1. Now y(1)=0 and
y'(1)=—e% At time t=1 the derivative of y() is suddenly increased by 3.

Consequently, for 1< 7<2, y(¢) satisfies the initial-value problem

d2

;—2——4@-+4y 0; y(1)=0, y'(1)=3-¢%
Since the initial conditions are given at t=1, we write this solution in the
form y()=[b,+ by(t —1)]e**~ Y (see Exercise 1). The constants b, and b,
are determined from the initial conditions

0=y(l)=b, and 3—e?=y'(1)=2b,+b,.

Thus, b, =0, b,=3—e? and y(£)=(3 —e?)(t—1)e**~Y, 1<t <2. Now,
y(2)=(3—e?)e? and y'(2)=3(3 - e?)e®. At time t=2 the derivative of y(f)
is suddenly increased by 1. Consequently, for 2 < < oo, y(¢) satisfies the
initial-value problem

dy & 2 2 2 2
——4———+4y=0; y(2)=€e*(3-¢%), y'(2)=1+3e*(3—¢?).
dr? dt
Hence y(f)=[c,+ c,(t—2)]e**~?. The constants ¢, and c, are determined
from the equations

e’(3—e*)=c; and 1+3e*(3—e?)=2¢,+c,.
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2 Second-order linear differential equations

Thus,
c,=e*(3—¢e?), c=1+3e*(3—e?)—2e*(3-e?)=1+e*(3—¢?)

and y()=[e2(3—ed)+ (1 + e} (3 —eH))(t —2)]e* =, ¢ > 2. The reader should
verify that this expression agrees with the expression obtained for y(#) by
the method of Laplace transforms.

Example 2. A particle of mass | is attached to a spring dashpot mechanism.
The stiffness constant of the spring is 1 N /ft and the drag force exerted by
the dashpot mechanism on the particle is twice its velocity. At time ¢ =0,
when the particle is at rest, an external force e ~* is applied to the system. At
time ¢ =1, an additional force f(¢) of very shor! duration is applied to the
particle. This force imparts an impulse of 3 N-s to the particle. Find the
position of the particle at any time ¢ greater than 1.

Solution. Let y(t) be the distance of the particle from its equilibrium
position. Then, y(¢) satisfies the initial-value problem

d
:1—;)+2é}-+y—e"+38(1—]); y(0)=0, y'(0)=0.

Let Y (s)=L£{y(#)}. Taking Laplace transforms of both sides of the dif-
ferential equation gives

1 _+ 3e“2‘
(s+1)  (s+1)

(s? +2s+l)Y(s)——l—+3e_5, or Y(s)=

Since
1 _ tze_l 38—: o
(s+1)3_8[ 2 } and (s+1)2=3f3{”n(’)("—1)e “=n)
we see that

—(=1

y(1)="1

Consequently, y(f)=1t%"'+3(t—1)e “" for t> 1.

We conclude this section with a very brief description of Laurent
Schwartz’s method for placing the delta function on a rigorous mathemati-
cal foundation. The main step in his method is to rethink our notion of
“function.” In Calculus, we are taught to recognize a function by its value
at each time 7. A much more subtle (and much more difficult) way of re-
cognizing a function is by what it does to other functions. More precisely,
let f be a piecewise continuous function defined for — o0 <¢< 0. To each
function ¢ which is infinitely often differentiable and which vanishes for ||
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2.12 The Dirac delta function

sufficiently large, we assign a number K [¢] according to the formula

K[o]=[ Z () £ (1) dt. )

As the notation suggests, K is an operator acting on functions. However, it
differs from the operators introduced previously in that it associates a
number, rather than a function, with ¢. For this reason, we say that K[¢] is
a functional, rather than a function. Now, observe that the association ¢—
K|[¢] is a linear association, since

Klewi+em]= [ (ati+ed)()f ()
=af " e dire " e S

=c,K[¢,]+c,K[9,]

Hence every piecewise continuous function defines, through (5), a linear
functional on the space of all infinitely often differentiable functions which
vanish for |¢| sufficiently large.

Now consider the functional K[¢] defined by the relation K[¢]=¢(Zy).
K is a linear functional since

K[ci9,+ ey, =191 (2) + ey (to) =1 K[$,] + K[, ]-
To mimic (5), we write K symbolically in the form

K(o]= [ o(08 (i~ ©)

In this sense, 8 (¢ — t,) is a “generalized function.” It is important to realize
though, that we cannot speak of the value of 8(¢—1,) at any time ¢. The
only meaningful quantity is the expression f * (D)8 (t— to)dt, and we
must always assign the value ¢(¢,) to this expresgon.

Admittedly, it is very difficult to think of a function in terms of the lin-
ear functional (5) that it induces. The advantage to this way of thinking,
though, is that it is now possible to assign a derivative to every piecewise
continuous function and to every “generalized function.” To wit, suppose

that f(¢) is a differentiable function. Then f'(¢) induces the linear func-
tional

K(sl= [ s (e (7)

Integrating by parts and using the fact that ¢(¢) vanishes for || sufficiently
large, we see that

K(s)= [ [-o®]f(di=K[-¢) ®
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2 Second-order linear differential equations

Now, notice that the formula K'[¢]= K[—¢'] makes sense even if f(¢) is
not differentiable. This motivates the following definition.

Definition. To every linear functional K[¢] we assign the new linear func-
tional K’[¢] by the formula K'[¢]= K|—¢']. The linear functional K'[¢]
is called the derivative of K[¢] since if K[¢] is induced by a differentia-
ble function f(r) then K’[¢] is induced by f'(¢).

Finally, we observe from (8) that the derivative of the delta function
8 (2 — 1) is the linear functional which assigns to each function ¢ the num-
ber —¢'(1p), for if K[p]=o(t) then K'[¢]= K[—¢]= —¢'(t). Thus,

|7 (08 (1= t9)di= ~ (1)
for all differentiable functions ¢(¢).

EXERCISES

1. Let a be a fixed constant. Show that every solution of the differential equation
(d% /dt+2a(dy/df)+ a®y =0 can be written in the form

y(’)=[cl+L‘2(t—a)]e“ﬂ(l—a).

2. Solve the initial-value problem (d2y /dt?)+4(dy /dt)+ Sy =f(1); y(@)=1, y'(0)=
0, where f(7) is an impulsive force which acts on the extremely short time inter-

val 1<r<1+7, and fll+’f(z)dr=2.

3. (a) Solve the initial-value problem (d2y/dt?) —3(dy/df)+2y=f(1); y(0)=1,
y'(0)=0, where f(?) is an impulsive function which acts on the extremely

short time interval 2< 7 <2+, and f;”f(t) di=-1.

(b) Solve the initial-value problem (d?y /dt*)—3(dy/dt)+2y =0; y(0)=1, y'(0)
=0, on the interval 0< ¢ <2. Compute zo=y(2) and zy=y’(2). Then solve
the initial-value problem

dy & N
?-—3E+2y=0; y@2)=z5, y(2)=25—-1, 2<t< 0.

Compare this solution with the solution of part (a).

4. A particle of mass 1 is attached to a spring dashpot mechanism. The stiffness
constant of the spring is 3 N/m and the drag force exerted on the particle by the
dashpot mechanism is 4 times its velocity. At time ¢ = 0, the particle is stretched }
m from its equilibrium position. At time ¢ = 3 seconds, an impulsive force of very
short duration is applied to the system. This force imparts an impulse of 2 N-s to
the particle. Find the displacement of the particle from its equilibrium position.
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2.13 The convolution integral

In Exercises 5-7 solve the given initial-value problem.

5. &y +y—smt+8(t—7r), y(0)=0, y'(0)=0

d2
d2

6. df 3;+y 26(1—=1)-8(1=2); y(0)=1,y'(0)=0
d2 dy -t /

7. F+2}ﬁ+y=e +38(t=3); y(0)=0,y'(0)=3

8. (a) Solve the initial-value problem

d2

d2+y Ses¢-jm,  yO=y(©=0,

Jj=0

and show that

sinf, neven
y(0= { n odd

in the interval n7 <t <(n+1)7.
(b) Solve the initial-value problem

d?y

—a = Ss0-um,  »O=r©=0,

Jj=0

and show that y(f)=(n+ 1)sin¢ in the interval 2n7 <t <2(n+ ).
This example indicates why soldiers are instructed to break cadence when
marching across a bridge. To wit, if the soldiers are in step with the natural
frequency of the steel in the bridge, then a resonance situation of the type (b)
may be set up.

9. Let f(¢) be the function which is £ for ¢ >t,, O for t=1,, and —1 for ¢ < #y. Let
K[¢] be the linear functional

Klol= [~ o0 f ()

Show that K'[¢]= K[—¢']=¢(t;). Thus, 6 (z— ;) may be viewed as the deriva-
tive of f(z).

2.13 The convolution integral

Consider the initial-value problem

d’ d
a S b= yO)=r Y(O0)=¥ (1)

Let Y(s)=L£{y(¢)} and F(s)=L{f(¢)}. Taking Laplace transforms of
both sides of the differential equation gives

a[szY(s)—syO-—y(’)] +b[sY(s) —yo] +cY(s)=F(s)
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2 Second-order linear differential equations

and this implies that

Y(s)= as+b a v F(s)
ast+bs+c”° as®+bs+c as’+bs+c
Now, let
_ b
H=p ‘{——as"' ]
»i(1) ast+ bs+c¢
and

]

»2(1) as’+ bs+c
Setting f(#)=0, yo=1 and y;=0, we see that y,(¢) is the solution of the ho-
mogeneous equation which satisfies the initial conditions y,(0)=1, y1(0)=
0. Similarly, by setting f(1)=0, y,=0 and yy=1, we see that y,(¢) is the
solution of the homogeneous equation which satisfies the initial conditions
y2(0)=0, y5(0)=1. This implies that

F(s
¢(t)=f3"{ 9 }

as’+ bs+c¢

is the particular solution of the nonhomogeneous equation which satisfies
the initial conditions Y(0)=0, ¢/(0)=0. Thus, the problem of finding a par-
ticular solution y(¢) of the nonhomogeneous equation is now reduced to
the problem of finding the inverse Laplace transform of the function
F(s)/(as®+ bs + ¢). If we look carefully at this function, we see that it is
the product of two Laplace transforms; that is

et xe

as’+bs+c

y2(1) ]

a

It is natural to ask whether there is any simple relationship between (¢)
and the functions f(¢#) and y,(¢)/a. It would be nice, of course, if Y(7) were
the product of f(#) with y,(¢)/a, but this is obviously false. However, there
is an extremely interesting way of combining two functions f and g
together to form a new function f*g, which resembles multiplication, and
for which

E{(f+a)))=L{f(n}xE{e()}.

This combination of f and g appears quite often in applications, and is
known as the convolution of f with g.

Definition. The convolution (f*g)(¢) of f with g is defined by the equation

(f+8)(0)= [ "f(t—u) g (u)du. @)
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2.13 The convolution integral

For example, if f(f)=sin2¢ and g(f)=e", then

(f*g)(t)= fo in2(t— u)e* du.

The convolution operator * clearly bears some resemblance to the mul-
tiplication operator since we multiply the value of f at the point t—u by
the value of g at the point u, and then integrate this product with respect to
u. Therefore, it should not be too surprising to us that the convolution op-
erator satisfies the following properties.

Property 1. The convolution operator obeys the commutative law of multi-
plication; that is, (f*g)(©)=(g*f ).
Proor. By definition,

(f+8)()= j:f(t— u) g(u)du.

Let us make the substitution t —u =y in this integral. Then,
0
(f8)(0)== [ S(5)8(1=5)ds
t
= [ 8(=)f () ds=(g+/)(). O

Property 2. The convolution operator satisfies the distributive law of mul-
tiplication; that is,

fr(g+h)=frg+f*h.
Proor. See Exercise 19. O
Property 3. The convolution operator satisfies the associative law of multi-
plication; that is, (f*g)*h=f*(g*h).

PrROOF. See Exercise 20. O

Property 4. The convolution of any function f with the zero function is
Zero.

ProOF. Obvious. ad

On the other hand, the convolution operator differs from the multiplica-
tion operator in that f* 15 f and f+f+f2 Indeed, the convolution of a
function f with itself may even be negative.

Example 1. Compute the convolution of f(¢)=t?> with g(¢)=1.
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2 Second-order linear differential equations

Solution. From Property 1,

()0 =(g#0) )= [ 1ldu=5.

Example 2. Compute the convolution of f(z)=cost with itself, and show
that it is not always positive.
Solution. By definition,

(f*f)(t)=ftcos(t—u)cosudu
0
= f I(cos tcos®u +sintsinucos u)du
0

t t
=costf —li—gzgsz—udu+sintf sinucosudu
0 0

t . sin2¢] . sin®¢
=cost| = + ——
[2 4 2
_ fcost+sintcos’ +sin’s
2
tcost +sint(cos?t +sint)
B 2
_ tcost+sint
—

This function, clearly, is negative for
(2n+l)7r<t<(2n+l)7r+%77, n=0,1,2,....

We now show that the Laplace transform of fxg is the product of the
Laplace transform of f with the Laplace transform of g.

Theorem 9. £{(f*g)(1)} =L {f(1)) X L{ g(£)).
PrROOF. By definition,

® t
E{(f*g)(1)}= f e_"[j(; f(— u)g(u)du} dr.
0
This iterated integral equals the double integral
[ [ e f(t—u)g(u)dud
R

where R is the triangular region described in Figure 1. Integrating first
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2.13 The convolution integral

Figure 1

with respect to 7, instead of u, gives

(90} = [ 80 [T -s)at]
0 u
Setting t —u=¢, we see that

/ Pesf(t—u)dt= fo Pemswt0 £(8) d¢.

Hence,

R ((fre)(1)) = f wg(u)[ [e e @ de]
0

_ [ [ g(u)e—wdu“ f we““f(ﬁ)dﬁ]
=L{f(n}xL{g(n)}. O

Example 3. Find the inverse Laplace transform of the function
a

s2(s*+a?)
Solution. Observe that

1
s—2=E{t} and

= {sinat).
s2+a? { )

Hence, by Theorem 9
—1 a _ 4 _ .
£ {m}—j(;([ u)smaudu

_ at—sinat

a2
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2 Second-order linear differential equations

Example 4. Find the inverse Laplace transform of the function
N S
s(s242s+2)

Solution. Observe that

1 1

=£{1} and =
oy SPH2542  (s+1)7+1

=L {e *sint}.

hl—a

Hence, by Theorem 9,

e “sinudu

I
s

-1 1
{ s(s2+2s+2) }

%[l—e—'(cost+sint)].

Remark. Let y,(¢) be the solution of the homogeneous equation ay” + by’

+ ¢y =0 which satisfies the initial conditions y,(0)=0, y5(0)=1. Then,
y2(1)

V=) = 3)
is the particular solution of the nonhomogeneous equation ay” + by’ +c¢cy =
Sf(#) which satisfies the initial conditions y(0)=¢/(0)=0. Equation (3) is
often much simpler to use than the variation of parameters formula de-
rived in Section 2.4.

EXERCISES

Compute the convolution of each of the following pairs of functions.

1. e, e”, a=b 2. e%, e
3. cosat, cosbt 4, sinat, sinbt, a# b
5. sinat, sinat 6. ¢, sint

Use Theorem 9 to invert each of the following Laplace transforms.
1 s

—_— 8 ———— 9 g
2 (s*+1) (s+1)(s2+4) T (s2+1)
1 1 1
10, —— 11, — 12,
s(s?+1) s (s+1)° (s2+1)

Use Theorem 9 to find the solution y(¢) of each of the following integro-
differential equations.

13. y(1)=41—-3 f "y (u)sin(t — u)du
0
!

4. y(t)=4t—3fy(t—u)sinudu
0
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2.14 The method of elimination for systems

15. y'(f)=sint + f "y (t = u)cosudu, y(0)=0
0
16. y(f)=412— f "V (e~ dy
0
t .
17. y’(t)+2y+fy(u)du=smt,y(0)=l
0

18. y()=t—e" ['y(ue ™ du

0
19, Prove that fx(g+h)=f*g+f*h.
20. Prove that (fxg)xh=f*(g=*h).

2.14 The method of elimination for systems

The theory of second-order linear differential equations can also be used
to find the solutions of two simultaneous first-order equations of the form

X'= % =a()x+b(1)y +/(1)
)]
=2 ce(xrd()y+a(r).

The key idea is to eliminate one of the variables, say y, and then find x as
the solution of a second-order linear differential equation. This technique
is known as the method of elimination, and we illustrate it with the follow-
ing two examples.

Example 1. Find all solutions of the simultaneous equations

X' =2x+y+t
, (2
y'=x+3y+1.
Solution. First, we solve for
y=x'—2x—t 3)

from the first equation of (2). Differentiating this equation gives
y=x"-2x"—1=x+3y+1.
Then, substituting for y from (3) gives
x"=2x'—1=x+3(x'-2x—1)+1
so that
x"=5x"+5x=2-3t. 4
Equation (4) is a second-order linear equation and its solution is

i 14 3¢
x(t)=€5’/2[cle\/§1/2+C2€_\/§'/2]———( 3 )
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2 Second-order linear differential equations

for some constants ¢, and c,. Finally, plugging this expression into (3) gives
y(t)=e37? %@Cle\fs e l:fvi%e—\fsr/z + %

Example 2. Find the solution of the initial-value problem
x'=3x—y, x(0)=3

, (%)
y'=x+y, y(0)=0.
Solution. From the first equation of (5),
y=3x—-x" (6)

Differentiating this equation gives
Y =3x'—x"=x+y.
Then, substituting for y from (6) gives
3x'~x"=x+3x—x'
so that
x"—4x"+4x=0.
This implies that
x(£)=(c,+cyt)e*
for some constants c,, ¢,, and plugging this expression into (6) gives
y()=(c;—c,tcr)e?.
The constants ¢, and ¢, are determined from the initial conditions
x(0)=3=c,
y(0)=0=c,—c,
Hence ¢,=3, ¢,=3 and
x()=3(1+1¢)e*, y(t)=3te*
is the solution of (5).
Remark. The simultaneous equations (1) are usually referred to as a first-

order system of equations. Systems of equations are treated fully in
Chapters 3 and 4.

EXERCISES

Find all solutions of each of the following systems of equations.

1. x'=6x-3y 2 x'=-2x+y+t
y'=2x+y y'=—4x+3y—1
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2.15 Higher-order equations

3. x'=-3x+2 4. x'=x+y+e’
y'==x=y y'=x—y—e'

Find the solution of each of the following initial-value problems.

5. x'=x+y, x(0)=2 6. x'=x-3y, x(0)=0
y'=4x+y, y(0)=3 y'==2x+2, y@0)=5
7. xX=x-y, x(0)=1 8 x'=3x-2y, x(0)=1
y'=5x-3y, y(0)=2 y'=4x-y, y@0)=5
9. x'=4x+5y+4e'cost, x(0)=0  10. x’'=3x—4y+e’, x(0)=1
y/=__2x_2y, y(0)=0 yl=x_y+e', y(0)=1
11, x'=2x~-5y+sint, x(0)=0 12, x' =y +fi(1), x(0)=0
y'=x—-2y+tant, y(0)=0 '=—x+f(8), y0)=0

2.15 Higher-order equations

In this section we briefly discuss higher-order linear differential equations.

Definition. The equation

dn

L[y]=a() T2 +a, () 22

dtn—l

is called the general nth order homogeneous linear equation. The dif-
ferential equation (1) together with the initial conditions

+...4+a,()y=0, a,(1)0 (1)

y(to)=ye Y (t0)=yo....y" " Dtg) =y~ P (1)

is called an initial-value problem. The theory for Equation (1) is com-
pletely analogous to the theory for the second-order linear homoge-
neous equation which we studied in Sections 2.1 and 2.2. Therefore, we
will state the relevant theorems without proof. Complete proofs can be
obtained by generalizing the methods used in Sections 2.1 and 2.2, or by
using the methods to be developed in Chapter 3.

Theorem 10. Let y,(?),...,y,(t) be n independent solutions of (1); that is, no
solution y,() is a linear combination of the other solutions. Then, every
solution y (1) of (1) is of the form

y(O)=cyi(D+...+c,p,(0) (2)

for some choice of constants c,,...,c,. For this reason, we say that (2) is
the general solution of (1).

To find n independent solutions of (1) when the coefficients ay, a,,...,a,
do not depend on ¢, we compute
Lle"]=(a,r"+a,_r" '+ ... +ay)e”. 3)
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2 Second-order linear differential equations

This implies that e” is a solution of (1) if, and only if, r is a root of the
characteristic equation

a,r"+a,_;r" '+ ... +a,=0. 4

Thus, if Equation (4) has n distinct roots r,,...,r,, then the general solution
of (1) is y()=cie™+ ... +ce™. If r;=a;+if; is a complex root of (4),
then

u(t)=Re{e’ } =e%' cos Bt
and

o(f)=Im{e’ } =e%'sin B
are two real-valued solutions of (1). Finally, if r, is a root of multiplicity k&;
that is, if

a,r*+.. +a0=(r—r1)kq(r)
where gq(r)#0, then e™, te™,...,t*"le"’ are k independent solutions of
(1). We prove this last assertion in the following manner. Observe from (3)
that

Lle"}=(r=r)*q(r)e"

if r, is a root of multiplicity k. Therefore,

L[tjerlt]___L[ Y e :}

or/

r=r,

= o
- aer[e ]

r=r

= r=n)a(r)e”

r=r,

=0, for 1< j<k.

Example 1. Find the general solution of the equation

d“y
—e =0 (%)

Solution. The characteristic equation of (5) is r*+ 1=0. We find the roots
of this equation by noting that

—1= ei1r= e3'rri= Sori Tmi

em=e
Hence,

ir/4 _ m L T 1 .

r=e /4—cosz+ts1nz—ﬁ(l+z),
r2=e3""/4—cos-3—+zs1n3—w=———(1—1)

4 4 V2
= pomi/4 Sw 57 1 .
ry=e’m/4= cos—a—+tsmT——7__2—(l+t),
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2.15 Higher-order equations

and

r4=e7”i/4—cosl‘1— + isin _741 = —(1 —1i)

are 4 roots of the equation r*+ 1=0. The roots r, and r, are the complex
conjugates of r, and r,, respectively. Thus,

e"‘=e’/ﬁ[cos#+isin——£—]
V2

and

ert=e~t/V2 [cos L +isin—t—]
V2 V2

are 2 complex-valued solutions of (5), and this implies that

V2 ! — o t/VZ o ¢
yi()=e’Vicos —, y,(t)=e sin —,
V2
_ _—t/V2 ! _ _—t/V2 t
ya(t)=e V2 cos——, and y,(f)=e sin —
() V2 «(1 V2

are 4 real-valued solutions of (5). These solutions are clearly independent.
Hence, the general solution of (5) is

V2 4 . t
y(1)=e" [a cos — +b sm——-]
(?) 1008 ==+ by sin —

“'/\F[a cosL+b sm#}.
Vi V2

Example 2. Find the general solution of the equation
dy . dy . dy &
— -3—+3—= - —=0. 6
a* dr ar dt ©)
Solution. The characteristic equation of (6) is
0=r*-3r+3r2—r=r(r*-3r2+3r-1)
=r(r—1)>.

Its roots are r; =0 and r,=1, with r,=1 a root of multiplicity three. Hence,
the general solution of (6) is

y(t)=c +(cy+cst+cgt?)e’
The theory for the nonhomogeneous equation
d’y
L[y]=a,,(t)w-+...+a0(t)y=f(t), a,(t)#0 @)
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2 Second-order linear differential equations

is also completely analogous to the theory for the second-order nonhomo-
geneous equation. The following results are the analogs of Lemma 1 and
Theorem 5 of Section 2.3.

Lemma 1. The difference of any two solutions of the nonhomogeneous equa-
tion (7) is a solution of the homogeneous equation (1).

Theorem 11. Let (¢) be a particular solution of the nonhomogeneous equa-
tion (1), and let y\(1),...,y,(¥) be n independent solutions of the homoge-
neous equation (1). Then, every solution y(t) of (7) is of the form

y(O) =9 +ep(D+ ... +c.2,(0)
for some choice of constants cy, cy,...,C,.

The method of judicious guessing also applies to the nth-order equation

n

a,,W+...+a0y=[b0+b,t+...+bkt"]e°". (8)

It is easily verified that Equation (8) has a particular solution y(¢) of the
form

Y(O)=[coteyt+ ... +¢rk]e

if e is not a solution of the homogeneous equation, and
Y()y=t[cotet+... +othle™

if #/~le* is a solution of the homogeneous equation, but #e* is not.

Example 3. Find a particular solution ¢/(#) of the equation

dy dy _dy
L[y]=ﬁ+3—‘;t—i-+37t+y=e’. (9)

Solution. The characteristic equation

P32 +3r+1=(r+1)

has r=—1 as a triple root. Hence, e’ is not a solution of the homogeneous
equation, and Equation (9) has a particular solution y(¢) of the form
Y(1)=4Ade'.

Computing L[y)(f)=84e’, we see that 4 =4%. Consequently, y()=ze'is a
particular solution of (9).

There is also a variation of parameters formula for the nonhomoge-
neous equation (7). Let v(¢) be the solution of the homogeneous equation
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2.15 Higher-order equations

(1) which satisfies the initial conditions v(,) =0, v'(£)) =0,...,0"~2(;) =0,

0™~ D(t)=1. Then,
“o(t-5)
v(1)= f Rl

is a particular solution of the nonhomogeneous equation (7). We will prove
this assertion in Section 3.12. (This can also be proven using the method of
Laplace transforms; see Section 2.13.)

EXERCISES
Find the general solution of each of the following equations.
1. y"=2y"—y'+2y=0 2, y""—6y”"+5y'+12y=0
3.y 5y +6y” +4y’—8y =0 4. y"—y"+y' —y=0
Solve each of the following initial-value problems.
5.y 44y +14y” =20y +25y =0;  y(0)=y'(0)=y"(0)=0, y"'(0)=0
6. y®-y=0; y(O=1y(0)=y"(0)=0,y"0)=—1
7. yV=2y®+y"=0; y(0)=y'(0)=y"(0)=y""(0)=0, y™(0)= -1
8. Given that y,(f)=e’cost is a solution of
Yy =2y +y" +2y' =2y =0, *)

find the general solution of (*). Hint: Use this information to find the roots of
the characteristic equation of (*).

Find a particular solution of each of the following equations.

9.y’ +y =tant 10. y™ —y=g(1)
1L y™+y=g(1) 12. y" +y' =2 +4sin¢
13. y"" —4y'=t+cost+2e % 14. y™ —y=t+sint¢
15. y 42" +y=¢Zsint 16. D 4y” =42
17. y"+y"+y'+y=t+e”’ 18,y +4y” +6y” +4y' +y =% "

Hint for (18): Make the substitution y = e ~‘v and solve for v. Otherwise, it will
take an awfully long time to do this problem.
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Systems of differential equations

3.1 Algebraic properties of solutions of linear systems

In this chapter we will consider simultaneous first-order differential equa-
tions in several variables, that is, equations of the form

dx,

E" =f| (t,xl,...,xn),

dx,

——=f2(t,x,,...,x"), (1)
dt

dx

7 =fn (t,xl,...,x,,).

A solution of (1) is n functions x,(?),...,x,(?) such that dx,(1)/dt=
[x (®),...,x, (D), j=1,2,...,n. For example, x,(1)=t and x,()=1>is a
solution of the simultaneous first-order differential equations
dx, Xy

T =] and o =2x,
since dx,(#)/dt=1 and dx,(t)/dt =2t =2x,(2).

In addition to Equation (1), we will often impose initial conditions on
the functions x,(¢),...,x,(#). These will be of the form

X1 (t)=x3,  x,(t)=x3,...,x,(tp) = x7. (1)
Equation (1), together with the initial conditions (1), is referred to as an
initial-value problem. A solution of this initial-value problem is n functions
x1(0),...,x,(¢) which satisfy (1) and the initial conditions
x1(to) = x1s..., %, (1) = x;.

For example, x,(f)=e’ and x,(f)=1+¢* /2 is a solution of the initial-
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3.1 Algebraic properties of solutions of linear systems

value problem

dx,

7=x1, x1(0)=1,
dX2 3
- =% x0)=3,

since dx,(1)/dt=e' = x,(t), dx(t)/dt=e* = x(1), x,(0)=1 and x,(0)=2.
Equation (1) is usually referred to as a system of n first-order differen-
tial equations. Equations of this type arise quite often in biological and
physical applications and frequently describe very complicated systems
since the rate of change of the variable x; depends not only on # and x;, but
on the value of all the other variables as well. One particular example is the
blood glucose model we studied in Section 2.7. In this model, the rates of
change of g and A (respectively, the deviations of the blood glucose and net
hormonal concentrations from their optimal values) are given by the equa-
tions J
7‘§=—m1g—-m2h+J(t), “Il—i'=—m3h+m4g.
This is a system of two first-order equations for the functions g(¢) and h(z).
First-order systems of differential equations also arise from higher-order
equations for a single variable y(¢). Every nth-order differential equation
for the single variable y can be converted into a system of n first-order

equations for the variables
n—1

Yy
dtn—l ‘

0=y, &= 0=

Examples 1 and 2 illustrate how this works.

Example 1. Convert the differential equation
d "y
dt n—1

into a system of n first-order equations.
Solution. Let x,(f)=y, x,({)=dy/dt,..., and x,(f)=d""'y/dt"~'. Then,

d’l
a,,(t)T{+a,,_,(t) +...+a,y=0

dx, dx, dx,_,
I Y Tk R et
and
ﬂ __ a,_(x,+a,_,()x,_+ ... +apx,
dt a,(1)

Example 2. Convert the initial-value problem
d%y ‘b) 2 t ’ ”
}7+(?17) +3y=e’;  y(0)=1, »'(0)=0, »"(0)=0

into an initial-value problem for the variables y, dy/dt, and d?y /dt>.
265



3 Systems of differential equations

Solution. Set x,(t)=y, x,(t)=dy/dt, and x(f)=d>y /dt*. Then,

dx, _ dx, _ dxs 3
Moreover, the functions x,, x,, and x; satisfy the initial conditions x,(0)=
1, xZ(O) = O, and X3(0) = O.

If each of the functions f;,...,f, in (1) is a linear function of the depen-
dent variables x,,...,x,, then the system of equations is said to be linear.
The most general system of » first-order linear equations has the form

dx,
aZ =ay(Dx+... +a,,()x,+8(1)
: )

Xn
_d—t— =ay (t)‘xl +...+ ann(’)xn +gn(t)

If each of the functions g,...,g, is identically zero, then the system (2) is

said to be homogeneous; otherwise it is nonhomogeneous. In this chapter,

we only consider the case where the coefficients a; do not depend on ¢.
Now, even the homogeneous linear system with constant coefficients

dx,
7 =a”x1+ O +al’lx"
: 3)
dx,
73 =a,x;+...+a,x,

is quite cumbersome to handle. This is especially true if » is large. There-
fore, we seek to write these equations in as concise a manner as possible.
To this end we introduce the concepts of vectors and matrices.

Definition. A vector

is a shorthand notation for the sequence of numbers x,,...,x,. The
numbers x,,...,x, are called the components of x. If x,=x,(¢),..., and
x,=x,(), then

xy(1)
x(1)=
x, (1)
is called a vector-valued function. Iis derivative dx(f)/dt is the vector-

266



3.1 Algebraic properties of solutions of linear systems

valued function

~

dx, (1) |
dt

dx, (1)
dt

Definition. A matrix
a, ap ... a

a, ax oo a,,
A=

An1 G Ap

is a shorthand notation for the array of numbers g;; arranged in m rows
and n columns. The element lying in the ith row and jth column is de-
noted by a;;, the first subscript identifying its row and the second sub-
script identifying its column. A is said to be a square matrix if m=n.

Next, we define the product of a matrix A with a vector x.

Definition. Let A be an nX n matrix with elements g; and let x be a vector
with components x,,...,x,. We define the product of A with x, denoted
by Ax, as the vector whose ith component is

apx;+apx,+ ... +a,x i=12,...,n

n’*n’

In other words, the ith component of Ax is the sum of the product of
corresponding terms of the ith row of A with the vector x. Thus,

(a;, a, ... a,)[x
Ay Gp .- Gy || X
Ax = .
A %) Ain Xn
apx,+apx,+...+a,,x,
ayxy+aypx,+...+ay,x,
a, x, +a"2x2-i- ..ta,x,
For example,

1 2 4)(3 3+4+4 11

-1 0 6||2|=|-34+0+6(=| 3{.

I 1 1J(1 3+2+1 6
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3 Systems of differential equations

Finally, we observe that the left-hand sides of (3) are the components of
the vector dx/dt, while the right-hand sides of (3) are the components

of the vector Ax. Hence, we can write (3) in the concise form

x an 4 .- A
1
dx azl a22 e azn
x=—=Ax, where x=] . and A=
dt . .
x, : :
ay Gp Ann

Moreover, if x,(?),...,x,(¢) satisfy the initial conditions
x1(t0)=x{,... %, (t0) = x7,
then x(¢) satisfies the initial-value problem
X

x=Ax, x(f,)=x° where x’=

For example, the system of equations

dx,
X2
7 15x,+ x,— x5
dx,
—‘-i;— =7x1+6x3

can be written in the concise form

3 -7 9 X,
X= 15 1 -1 X, X=|[X3],
7 0 6 X3

and the initial-value problem

dx,
—dt-=xl—x2+x3, x, (=1
dx,
_dt_ =3X2'—X3, X2(0)=0
dx

can be written in the concise form

1 -1 1 1
x=|0 3. —1|x, x(0)=| o]
1 0 7

268

(4)

(5)



3.1 Algebraic properties of solutions of linear systems

Now that we have succeeded in writing (3) in the more manageable
form (4), we can tackle the problem of finding all of its solutions. Since
these equations are linear, we will try and play the same game that we
played, with so much success, with the second-order linear homogeneous
equation. To wit, we will show that a constant times a solution and the
sum of two solutions are again solutions of (4). Then, we will try and show
that we can find every solution of (4) by taking all linear combinations of a
finite number of solutions. Of course, we must first define what we mean
by a constant times x and the sum of x and y if x and y are vectors with n
components.

Definition. Let ¢ be a number and x a vector with n components x,,...,x,.
We define ¢x to be the vector whose components are cx;,...,cx,, that is
X, cx,
X, cx,
cx=c =| .
X cxX

For example, if

3 3 6
c=2 and x=|1|, then 2x=2|1{=| 2].
7 7 14

This process of multiplying a vector x by a number ¢ is called scalar
multiplication.

Definition. Let x and y be vectors with components x,,...,x, and y,,...,y,
respectively. We define x+y to be the vector whose components are
X+ Yisee05 X, +y,, that is

Xy Y1 (x;+y,
Xy Y2 X, 1y,
x+y=| |+ . |=| . 7|
'x.n —).)Il xﬂ:'-y’l
For example, if
1 (—1
x= g and y= _'6/ ,
2 L9
then
1 -1 0
6 -6 0
+y= + = )
XTY=13 717 (10
2 9 11

This process of adding two vectors together is called vector addition.
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3 Systems of differential equations

Having defined the processes of scalar multiplication and vector addi-
tion, we can now state the following theorem.

Theorem 1. Let x(f) and y(t) be two solutions of (4). Then (a) cx(¢) is a solu-
tion, for any constant c, and (b) x(¢)+y(?) is again a solution.

Theorem 1 can be proven quite easily with the aid of the following
lemma.

Lemma. Let A be an nX n matrix. For any vectors x and y and constant c,
(a) A(cx)=cAx and (b) A(x +y)=Ax+Ay.

PROOF OF LEMMA.

(a) We prove that two vectors are equal by showing that they have the
same components. To this end, observe that the ith component of the vec-
tor cAx is

cayx,+canxy+ ... +ca,x,=c(ayx, + ... +a,x,),

and the ith component of the vector A(cx) is
g (cxp) +ap(cx)+ ... +a,(ex,)=clagx + ... +a,x,).

Hence A(cx)=cAx.
(b) The ith component of the vector A(x+y) is

a (x;+y)+ ..+ a, () =(ax + .+ ax) (@ + .+ a, ).
But this is also the ith component of the vector Ax+ Ay since the ith com-
ponent of Ax is g;x;+ ... +a,,x, and the ith component of Ay is g; y,

m°'n

+...+a,y, Hence A(x + y)=Ax+Ay. O

PROOF OF THEOREM 1.
(a). If x(¢) is a solution of (4), then

c(t) c ()

Hence, cx(¢) is also a solution of (4).
(b). If x(#) and y(¢) are solutions of (4) then

2 (x(0)+3(0) = 204 BO _ 1)+ Ay = A0 +3(0).

= cAx(t)=A(cx(?)).

Hence, x(¢)+ y(?) is also a solution of (4). O
An immediate corollary of Theorem 1 is that any linear combination of

solutions of (4) is again a solution of (4). That is to say, if x'(¢),...,x/(¢) are
Jj solutions of (4), then ¢,x'()+ ...+ ¢x/ () is again a solution for any
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3.1 Algebraic properties of solutions of linear systems

choice of constants c;,c,,...,c;. For example, consider the system of equa-
tions

dx, dx, dx 0 1 X1
_‘;t_—xz’ _4.x|, or _‘—‘( _4 0)x9 x_( ) (6)

This system of equations was derived from the second-order scalar equa-
tion (d%y /dt*)+4y =0 by setting x, =y and x,=dy /dt. Since y,(f)=cos2¢
and y,(f)=sin2¢ are two solutions of the scalar equation, we know that

x,(9) cos2t sin2¢
x(t)= =c, ) +c,
x,(1) —2sin2¢ 2cos2t
_ c,c082t+ c,sin2¢
—2¢,8in2t+2c,cos2t

is a solution of (6) for any choice of constants ¢, and c,.

The next step in our game plan is to show that every solution of (4) can
be expressed as a linear combination of finitely many solutions. Equiv-
alently, we seek to determine how many solutions we must find before we
can generate all the solutions of (4). There is a branch of mathematics
known as linear algebra, which addresses itself to exactly this question, and
it is to this area that we now turn our attention.

EXERCISES

In each of Exercises 1-3 convert the given differential equation for the sin-
gle variable y into a system of first-order equations.
d3 2 d3 d4 d2
1. —3)i+(dy)=0 2. —)—)+cosy=e’ 3. &y ey
dt ar drt  dr?
4. Convert the pair of second-order equations

d’y . ds d% &

into a system of 4 first-order equations for the variables

dt 1

X|=y, x=y’, x3=z, and x;=2z".

5. (a) Let y(r) be a solution of the equation y” +y’+y =0. Show that

y(0) )
y'(®)

is a solution of the system of equations

(0 1
% (_1 _l)x.

x(t)=(
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3 Systems of differential equations

(b) Let
x1(0)
x(1)=
( x,(1) )
be a solution of the system of equations

.- O 1
x=(_9 Ik

Show that y = x,(¢) is a solution of the equation y” +y’+y=0.

In each of Exercises 6-9, write the given system of differential equations
and initial values in the form x=Ax, x(¢,) =x".

6. )31=3x1—7x2, x1(0)=1 7. )'Cl=5xl+5x2, x,(3)=0
X,=4xy, x(0)=1 Xp=—x1+Tx3 x,(3)=6
8. Xy =x,+x,—x3 x,(0)=0 9. X, =—x;3 x(—1)=2
Xy=3x,—x;+4x;, x,(0)=1 Xy= x;, x(—1=3
X3= =X~ X x3(0)=~—1 X=X xy(—1)=4
10. Let

ff =l

Compute x+y and 3x—2y.
11. Let

Compute Ax if

1 0 0
(a)x=(0), (b)x=(1), (c)x=(0).
0 0 1

12. Let A be any nX n matrix and let e/ be the vector whose jth component is 1
and whose remaining components are zero. Verify that the vector Ae” is the jth
column of A.

13. Let

WO
~—

O = O

Compute Ax if

1 1 1 1
(a)x=(2), (b)x=(—1), (C)x=(1), (d)x=(0)-
4 -1 1 1

14. Let A be a 3X3 matrix with the property that

G0
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3.2 Vector spaces

Compute
Hint: Write

as a linear combination of

15. Let A be a 2X2 matrix with the property that

A(1)=(3) = a(_1)=(Z5)

Find A. Hint: The easy way is to use Exercise 12.

3.2 Vector spaces

In the previous section we defined, in a natural manner, a process of
adding two vectors x and y together to form a new vector z=x+y, and a
process of multiplying a vector x by a scalar ¢ to form a new vector u=cx.
The former process was called vector addition and the latter process was
called scalar multiplication. Our study of linear algebra begins with the
more general premise that we have a set V of elements x,y,z,... and that
we have one process that combines two elements x and y of V to form a
third element z in V and a second process that combines a number ¢ and
an element x in V to form a new element u in V. We will denote the first
process by addition; that is, we will write z=x+1y, and the second process
by scalar multiplication; that is, we will write u=cx, if they satisfy the us-
ual axioms of addition and multiplication. These axioms are:

(i) x+y=y+x (commutative law)
(ii) x+(y+2z)=(x+y)+z (associative law)
(iii) There is a unique element in V, called the zero element, and denoted
by 0, having the property that x+0=x for all x in V.
(iv) For each element x in V there is a unique element, denoted by —x
and called minus x, such that x+(—x)=0.
(v) I'x=xforallxinV.
(vi) (ab)x=a(bx) for any numbers a,b and any element x in V.
(vii) a(x+y)=ax+ay
(viii) (a+ b)x=ax+ bx.

A set V, together with processes addition and multiplication satisfying
(i)—(viii) is said to be a vector space and its elements are called vectors. The
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3 Systems of differential equations

numbers a,b will usually be real numbers, except in certain special cases
where they will be complex numbers.

Remark 1. Implicit in axioms (i)—(viii) is the fact that if x and y are in V,
then the linear combination ax+ by is again in V for any choice of con-
stants a and b.

Remark 2. In the previous section we defined a vector x as a sequence of n
numbers. In the more general context of this section, a quantity x is a vec-
tor by dint of its being in a vector space. That is to say, a quantity x is a
vector if it belongs to a set of elements V which is equipped with two
processes (addition and scalar multiplication) which satisfy (i)—(viii). As we
shall see in Example 3 below, the set of all sequences

of n real numbers is a vector space (with the usual operations of vector
addition and scalar multiplication defined in Section 3.1). Thus, our two
definitions are consistent.

Example 1. Let V be the set of all functions x(¢) which satisfy the differen-
tial equation

— —-x=0 (1)

with the sum of two functions and the product of a function by a number
being defined in the usual manner. That is to say,

(fl +/ )(’) =/ (t) +1 (’)

and
(cf)O)=cf ().

It is trivial to verify that V is a vector space. Observe first that if x! and x2
are in V, then every linear combination ¢,x'+ c,x? is in V, since the dif-
ferential equation (1) is linear. Moreover, axioms (i), (ii), and (v)—(viii) are
automatically satisfied since all we are doing at any time ¢ in function
addition and multiplication of a function by a number is adding or multi-
plying two numbers together. The zero vector in V is the function whose
value at any time ¢ is zero; this function is in V since x(¢)=0 is a solution
of (1). Finally, the negative of any function in V is again in V, since the
negative of any solution of (1) is again a solution of (1).
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3.2 Vector spaces

Example 2. Let V be the set of all solutions x(¢) of the differential equa-
tion (d*x /dr?>)—6x*=0, with the sum of two functions and the product of
a function by a number being defined in the usual manner. V is not a vec-
tor space since the sum of any two solutions, while being defined, is not
necessarily in V. Similarly, the product of a solution by a constant is not
necessarily in V. For example, the function x(#)=1/¢* is in V since it
satisfies the differential equation, but the function 2x(z)=2/¢* is not in V
since it does not satisfy the differential equation.

Example 3. Let V be the set of all sequences

X1

of n real numbers. Define x+y and c¢x as the vector addition and scalar
multiplication defined in Section 3.1. It is trivial to verify that V is a vector
space under these operations. The zero vector is the sequence

0
0

and the vector —x is the vector

This space is usually called » dimensional Euclidean space and is denoted
by R".

Example 4. Let V be the set of all sequences

X1

of n complex numbers x,,...,x,. Define x+y and cx, for any complex
number ¢, as the vector addition and scalar multiplication defined in Sec-
tion 3.1. Again, it is trivial to verify that V is a vector space under these
operations. This space is usually called complex » dimensional space and is
denoted by C”.
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3 Systems of differential equations

Example 5. Let V be the set of all n X n matrices A. Define the sum of two
matrices A and B to be the matrix obtained by adding together corre-
sponding elements of A and B, and define the matrix cA to be the matrix
obtained by multiplying every element of A by ¢. In other words,

an ay, ‘e Al b“ b12 bln
a4 dp .. dy N by by ... by,
Gp Gpa Qpnn by by ... b,
an+b, anp+b, ... a,tb,
ay+by, aptb, ... a,,t+bh,,
a,+b, a,t+b, .. a,tb,
and
cl . ) .=
a, 4, ... a, ca, cd, ... ca,

Axioms (i), (i), and (v)—(viii) are automatically satisfied since all we are
doing in adding two matrices together or multiplying a matrix by a number
is adding or multiplying two numbers together. The zero vector, or the
matrix 0, is the matrix whose every element is the number zero, and the
negative of any matrix A is the matrix

—a“ o “'aln

—a, —a,,

Hence V is a vector space under these operations of matrix addition and
scalar multiplication.

Example 6. We now present an example of a set of elements which comes
close to being a vector space, but which doesn’t quite make it. The purpose
of this example is to show that the elements of V can be just about any-
thing, and the operation of addition can be a rather strange process. Let V
be the set consisting of three animals, a cat, a dog, and a mouse. Whenever
any two of these animals meet, one eats up the other and changes into a
different animal. The rules of eating are as follows.
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3.2 Vector spaces

(1) If a dog meets a cat, then the dog eats up the cat and changes into a
mouse.

(2) If a dog meets another dog, then one dog eats up the other and
changes into a cat.

(3) If a dog meets a mouse, then the dog eats up the mouse and remains
unchanged.

(4) If a cat meets another cat, then one cat eats up the other and changes
into a dog.

(5) If a cat meets a mouse, then the cat eats up the mouse and remains un-
changed.

(6) If a mouse meets another mouse, then one mouse eats up the other and
remains unchanged.

Clearly, “eating” is a process which combines two elements of V to form a
third element in V. If we call this eating process addition, and denote it by
+, then rules 1-6 can be written concisely in the form
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